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ABSTRACT

Subjective expectations and asset prices both revolve around distorted probabilities.
Subjective expectations are expectations under biased probabilities, and asset prices
are expectations under risk-neutral probabilities. Given this link, asset pricing tech-
niques designed to estimate a Stochastic Discount Factor (SDF) can be used to estimate
a Subjective Belief Factor (SBF) � a distortion that characterizes many subjective ex-
pectations, even for non-�nancial variables. Conversely, the Subjective Belief Factor
can be used to characterize asset prices, by separating the roles of beliefs and prefer-
ences/risk. Using the Survey of Professional Forecasters and Blue Chip, we �nd that
di�erences between subjective expectations and statistical expectations for 24 macroe-
conomic variables can be summarized (average R2 of 50%) by a single SBF related
to real GDP growth and the T-bill rate. The results are broadly consistent with ex-
trapolation. Applying this SBF to cross-sectional stock returns, we �nd it accounts
for the majority of excess returns for the Fama-French factors and explains about half
the variation in returns across 176 anomalies, while the remaining half is attributed to
preferences/risk.
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Behavioral economics research studying subjective expectations and �nance research

studying asset prices are solving similar problems. Asset prices can be represented using

a distorted probability distribution, speci�cally a risk-neutral probability distribution, and

much of asset pricing research revolves around the equation

Pt = Et [Mt+1Xt+1] (1)

where Xt+1 is a payo�. Similarly, under general conditions, subjective expectations can be

represented as expectations under a distorted probability distribution that di�ers from the

objective distribution due to learning or behavioral biases,

E∗
t [Xt+1] = Et [St+1Xt+1] . (2)

Because of this similarity, we propose that asset pricing techniques can open novel pos-

sibilities for studying subjective expectations, even for non-�nancial variables Xt+1. First,

rather than studying subjective expectations for each variable individually, we can study

a single variable (St+1) that explains subjective expectations for many variables simultane-

ously. We refer to this variable as the Subjective Belief Factor (SBF). This is analogous

to asset pricing work studying the Mt+1 that links prices across many assets. Second, we

can summarize St+1 using only a small number of subjective expectations, akin to factors in

asset pricing. For example, an agent that overstates the probability of low real GDP growth

states will also overstate the probability of high unemployment states, as these states overlap,

meaning that the researcher does not need to model an additional unemployment-speci�c

bias. Third, we can easily compare many models of expectation formation by translating

each model into its implied SBF. This also allows us to easily test how well each model

matches the empirical SBF estimated from a large set of subjective expectations.1

Conversely, we argue that framing subjective expectations using a single SBF is bene�cial

1This is analogous to the approach in asset pricing (see Hansen and Richard, 1987; Hansen and Jagan-
nathan, 1991; Cochrane and Hansen, 1992; Heaton, 1995; Hansen et al., 1995, among others) where a wide
range of models can be easily compared once they are all translated into their implied SDF's. These models
can then be compared to the data by translating data moments into restrictions on the SDF.
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for asset pricing research. Using only information on prices, researchers cannot distinguish

if asset price anomalies re�ect biased beliefs or preferences/risk. Direct data on subjective

expectations can help to resolve this. However, incorporating potentially biased beliefs about

dozens of variables is typically infeasible (e.g., attempting to model overreaction to real GDP,

underreaction to in�ation, extrapolation of yields, learning about consumption growth, ...).

Because of this, asset pricing work is often limited to only using subjective expectations for

a small number of variables. By summarizing subjective expectations for many variables

with a single SBF, St+1, we can easily combine St+1 with a distortion exclusively based

on preferences/risk, denoted M̃t+1, to price assets and distinguish the roles of these two

variables.2

In this paper, we provide a theoretical foundation linking subjective expectations, asset

pricing techniques, and excess returns. Applying our approach to the Survey of Professional

Forecasters, we �nd that the di�erence between statistical expectations and subjective ex-

pectations for 15 macroeconomic variables can be largely summarized by a single SBF St+1

based on subjective expectations of just two variables: real GDP growth and the T-bill rate.

This SBF is broadly consistent with extrapolation. Using this SBF, we construct synthetic

expectations Et [St+1Yt+1] for an additional 9 macroeconomic variables Yt+1, and then verify

the accuracy of these synthetic expectations using additional survey data from Blue Chip.

Further, this SBF accounts for the majority of the excess returns for the Fama-French cross-

sectional anomalies and accounts for roughly half of the variation in the excess returns for

176 anomalies sorted into 22 categories from Chen and Zimmermann (2022).

To formalize our analysis, we �rst establish the conditions under which subjective ex-

pectations for many variables can be characterized by a single SBF. The key condition is

that subjective expectations are �coherent�, meaning that they satisfy basic rules regarding

addition and multiplication. We argue that this is a reasonable starting condition, given that

2Using log-a�ne functional forms for St+1 and M̃t+1 ensures that their product, Mt+1 ≡ St+1M̃t+1, is
also log-a�ne and tractable.
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it is satis�ed by many models of expectation formation.3 Importantly, agents can disagree

and there can be a di�erent SBF for each agent, however, there still exists a single consensus

SBF St+1 which explains the consensus forecast for all variables. If variables are normally

distributed or are functions of normally distributed variables (e.g., log-normal), we show that

the SBF has a straightforward log-a�ne representation and that excess returns on �nancial

assets can be easily decomposed into their comovement with St+1 and their comovement with

M̃t+1. Intuitively, an asset earns high excess returns if it pays o� in states of the world that

the agent thinks are unlikely or in states where the agent has a low preference for payo�s.

We then evaluate the e�cacy of applying asset pricing tools to subjective expectations

using the Survey of Professional Forecasters, one of the most commonly used sources of

macroeconomic forecasts.4 We study annual forecasts for 15 variables, the maximum amount

available, covering a wide range of topics, such as unemployment, housing starts, in�ation,

and government expenditures. We �nd that subjective expectations for all 15 variables, as

well as the di�erence between subjective expectations and statistical expectations, can be

largely explained by an SBF St+1 based on real GDP growth and the T-bill rate. Specif-

ically, synthetic expectations Et [St+1Xt+1] for all 15 variables match the actual subjective

expectations with an average R2 of 64.6% and match the di�erence between subjective and

statistical expectations with an average R2 of 47.2%. This result means that, given an SBF

that explains subjective expectations of real GDP growth and the T-bill rate, we can explain

subjective expectations for the remaining 13 variables based on the objective covariance of

these variables with real GDP growth and the T-bill rate.

Quantitatively, the explanatory power of the estimated SBF is comparable to the upper

bound from principal component analysis (PCA). However, unlike PCA, the estimated SBF

allows us to extend our results to other variables without needing any additional survey data.

We consider nine additional macroeconomic variables Yt+1, such as the mortgage rate and

3As a non-exhaustive list, adaptive expectations, sticky expectations, extrapolation, parameter learning,
noisy information, and rational inattention can all be represented by an SBF.

4In this survey, we can reasonably expect forecasts to be �coherent� since the vast majority of participants
use mathematical models to form their expectations.
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the 10-year Treasury rate, and calculate synthetic expectations Et [St+1Yt+1] based on our

estimated SBF. Importantly, we do not use any survey data for these nine variables when

constructing the synthetic expectations. We then verify the accuracy of these synthetic

expectations by comparing them to the subjective expectations measured from Blue Chip.

Once again, the synthetic expectations closely match the actual subjective expectations and

also match the di�erence between subjective and statistical expectations, with average R2's

similar to the Survey of Professional Forecasters results.

What do these results mean for models of expectation formation? First, our results indi-

cate that di�erences between subjective expectations and statistical expectations for many

variables can largely be condensed to beliefs about a few key variables, in this case real GDP

growth and the T-bill rate. While all 24 subjective expectations di�er from their correspond-

ing statistical expectations, researchers do not need 24 biases.5 This raises the prospect that

models of in�ation expectations (e.g., Malmendier and Nagel, 2016), consumption expecta-

tions (e.g., Collin-Dufresne, Johannes, and Lochstoer, 2016), risk-free rate expectations (e.g.,

Haubrich, Pennacchi, and Ritchken, 2012), etc. can be represented as di�erent manifesta-

tions of one underlying belief distortion. Second, the SBF nests many existing models of

expectation formation and the log-a�ne representation for the SBF makes it straightforward

to compare di�erent models. Each model can be summarized by the coe�cients it implies

for the log-a�ne formula. For illustration, we consider diagnostic expectations, extrapola-

tion, and Bayesian learning and demonstrate that our estimated coe�cients for the SBF are

relatively closer to the predictions of extrapolation.

In our last set of tests, we emphasize the bene�ts of our approach for asset pricing

researchers. Intuitively, once subjective expectations are framed using asset pricing tools,

they are easy to integrate into asset pricing research. Rather than attempting to incorporate

individual biases for each variable, we can focus on a single SBF (St+1) that summarizes

5Previous work has shown that biases in multiple expectations can be linked to the same conceptual
mechanism (e.g., in�ation expectations and unemployment expectations are both consistent with sticky
expectations). This previous approach still requires modeling a di�erent bias for each variable, as each
variable is impacted to a di�erent degree by the mechanism (e.g., di�erent degrees of stickiness).
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the subjective expectations for many variables and can be easily combined with a distortion

related to preferences (M̃t+1). In particular, if all variables are log-normal, then the historical

average excess return R̄e
t+1 for an asset can be decomposed into

log
(
R̄e

t+1

)
= Cov

(
−st+1, r

e
t+1

)
+ Cov

(
−m̃t+1, r

e
t+1

)
(3)

where lowercase denotes log values.

Equation (3) is closely related to asset pricing work connecting excess returns to measures

of sentiment (Baker and Wurgler, 2006; Huang et al., 2015; Stambaugh, Yu, and Yuan, 2024)

or to subjective expectations of returns (Greenwood and Shleifer, 2014; Engelberg, McLean,

and Ponti�, 2020; Giglio, Maggiori, Stroebel, and Utkus, 2021; Jensen, 2023; De la O, Han,

and Myers, 2024) and, in a sense, captures the best of both worlds. Like measures of

sentiment, this decomposition relates excess returns for many variables to a single belief-

related variable st+1. Like research on subjective expected returns, this decomposition is

quantitative, as it utilizes covariances rather than correlations. Because the decomposition

is quantitative, it addresses the common issue of risk and sentiment being correlated.6 At

the same time, by linking excess returns for many assets to a single SBF, this decomposition

removes the need to have subjective return expectations for each individual asset, which

relaxes several constraints related to data availability.7

Using our SBF estimated from subjective expectations of real GDP growth and the T-

bill rate, we show that the excess returns for the Fama-French size, value, investment, and

pro�tability factors appear to be largely accounted for by their comovement with −st+1.

Further, we connect our SBF to the two behavioral factor portfolios of Daniel, Hirshleifer,

and Sun (2020), who construct one factor sorting �rms by earnings surprises to capture

6If a researcher has a measure of sentiment that is correlated with future returns, there is always the
concern that this measure may simply be correlated with risk. In equation (3), the roles of st+1 and m̃t+1

can be distinguished even if they are correlated. If both st+1 and m̃t+1 negatively comove with the excess

return, then
Cov(−st+1,r

e
t+1)

log(R̄e
t+1)

∈ (0, 1) will tell us what portion is attributable to st+1 and what portion is

attributable to m̃t+1.
7Data on subjective return expectations for the long and short legs of anomalies is often limited to

post-2000 and comes almost exclusively from sell-side analyst forecasts, which may be prone to incentive
issues.
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short-term behavioral biases (e.g., weekly-level biases) and a separate factor using share

issuances to capture longer term behavioral biases. Given that our SBF is based on one-year

subjective expectations, we reassuringly �nd that our SBF accounts for almost none of the

excess return for their short-horizon factor and nearly all (93%) of the excess return for their

long-horizon factor. Finally, we study a large set of 176 anomalies sorted into 22 categories

from Chen and Zimmermann (2022). We �nd that the estimated SBF accounts for 56.1% of

the di�erences in excess returns across anomalies, while the remaining 43.9% is attributed

to the preference-based M̃t+1. Thus, while the SBF St+1 certainly does not explain all excess

returns, we �nd that it appears similar in importance to M̃t+1, with roughly a 50-50 split

when we consider many anomalies.

Broadly, this paper contributes to and attempts to link two literatures. The �rst is the

literature on subjective expectations of macroeconomic variables. Given the size of this

literature, we refer readers to the handbook by Bachmann et al. (2023) for an overview

and list of references. To a large extent, these papers focus on expectations for a single

variable, such as in�ation, output, interest rates, exports, housing, unemployment, etc.8

Other papers, such as Coibion and Gorodnichenko (2015) and Bordalo et al. (2020), propose

general tests that can be applied to many variables but, importantly, are designed to be

applied to each variable separately (e.g., testing for overreaction or underreaction for each

individual variable). We build on this work by presenting an approach that allows us to

study subjective expectations for many variables jointly and to condense these subjective

expectations down to a single SBF based on only a few variables.9 Our emphasis on jointly

analyzing multiple macroeconomic variables is related to recent work using statistical and

machine learning forecasts for large sets of variables (Bianchi, Ludvigson, and Ma, 2024).

Second, there is the asset pricing literature emphasizing that the Mt+1 that prices as-

sets may contain a belief-based component and a preference-based component, e.g. St+1

8For some recent examples, see Cieslak (2018), Kuchler and Zafar (2019) and Mueller et al. (2021).
9Importantly, we do not claim to be reinventing the wheel. These tools have long-existed in asset pricing.

Our goal is to demonstrate their e�ectiveness in understanding subjective expectations.
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and M̃t+1. The idea of framing subjective expectations as a distortion has been discussed

previously. For example, Piazzesi, Salomao, and Schneider (2015) use a probability distor-

tion to characterize subjective expectations related to bond yields. We formalize the idea

of representing subjective expectations as a distortion, demonstrating the conditions neces-

sary for St+1 to exist and addressing issues of aggregation and disagreement. Further, we

demonstrate that this SBF can be used not only to condense existing subjective expecta-

tions data but also to form synthetic expectations for other variables. We also emphasize

that this approach can be applied outside the context of �nance and asset pricing. Even for

a researcher purely interested in understanding subjective expectations of the components

of output (consumption, investment, government expenditures, and net exports), the tools

developed in asset pricing are still relevant.

Given that belief distortions operate in a very similar way to preference-based distortions,

Brav and Heaton (2002) and Adam and Nagel (2023) emphasize the di�culty or impossi-

bility of distinguishing St+1 and M̃t+1 solely from asset prices. We provide a method to

estimate St+1 from subjective expectations and demonstrate how this can be used to de-

compose observed excess returns into a belief-based component and a preference/risk-based

component. This is closely related to recent work by Chen, Hansen, and Hansen (2020) and

Chen, Hansen, and Hansen (2024) that uses asset prices to establish bounds on a belief dis-

tortion under assumptions regarding relative entropy. While they do not use survey data in

their empirical application, their method can incorporate survey data as additional moment

conditions. Additionally, our approach is related to Kozak, Nagel, and Santosh (2018) who

argue that structural models with speci�c assumptions about beliefs and preferences can be

used to separate St+1 and M̃t+1 using asset price data. We provide a complementary method

that extracts the SBF solely from survey data and then evaluates its ability to explain asset

prices.

The rest of the paper is organized as follows. Section I establishes the conditions under

which subjective expectations for many variables can be described by a single Subjective
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Belief Factor and demonstrates its key properties. Section II discusses the data on subjective

expectations taken from the Survey of Professional Forecasters and Blue Chip. Section

III applies asset pricing techniques to understand subjective expectations for �nancial and

non-�nancial macroeconomic variables. Section IV uses the SBF estimated from subjective

expectations to explain excess returns for a wide range of anomalies. Section V concludes.

I. Existence of the Subjective Belief Factor

In this section, we formalize how subjective expectations for multiple variables can be de-

scribed by a single subjective belief factor. In terms of notation, E∗
i,t [·] denotes the sub-

jective expectations of agent i at time t. All other operators use the objective probability

distribution. For example, Et [·] and Cov (·, ·) denote the conditional expectation and the

unconditional covariance under the objective probability distribution.

Throughout the paper, we assume that subjective expectations are �coherent,� mean-

ing that they satisfy two conditions. First, for any variables Yt+1, Zt+1 and constants a, b,

E∗
i,t [aYt+1 + bZt+1] equals aE∗

i,t [Yt+1] + bE∗
i,t [Zt+1]. Second, E∗

i,t [1] equals 1. These condi-

tions are all that is necessary to show that subjective expectations can be represented by a

subjective belief factor.

Proposition 1. There exists Si,t+1 such that E∗
i,t [Xt+1] = Et [Si,t+1Xt+1] for all variables

Xt+1 and Et [Si,t+1] = 1.

All proofs are provided in Appendix B. To an econometrician that knows the objective

probability distribution, the agent's subjective expectations appear as if she is overweighting

some states (i.e., those with Si,t+1 > 1) and underweighting other states (i.e., those with

Si,t+1 < 1).

This proposition is analogous to the result in asset pricing that the law of one price

implies the existence of a stochastic discount factor (SDF) that prices all assets. In asset

pricing, the SDF is a powerful, unifying tool. Rather than studying the price of each asset
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in isolation, researchers study the prices of many assets simultaneously by focusing on a

single variable (the SDF). To quote Cochrane (2005), �All asset pricing models amount to

alternative ways of connecting the stochastic discount factor to data.� We argue that the SBF

Si,t+1 is similarly powerful for understanding subjective expectations. Rather than separately

studying biases in in�ation expectations (Coibion and Gorodnichenko, 2015), interest rate

expectations (Cieslak, 2018), unemployment expectations (Link et al., 2023), etc., we can

study the single SBF which jointly explains these expectations.

One might wonder whether it is reasonable to assume subjective expectations are co-

herent. First, it is useful to note that nearly all models of subjective expectations assume

agents can add and multiply (e.g., sticky expectations, extrapolation, adaptive expectations,

learning, noisy signals, etc.).10 In fact, representing beliefs using an SBF Si,t+1 provides a

useful way to nest and compare all of these models. Second, for our applications, we focus

on the Survey of Professional Forecasters. Stark (2013) shows that 80% of these forecasters

make their forecasts using a �mathematical/computer model plus subjective adjustments.�

The forecasters have an underlying model and, based on subjective beliefs or intuition, may

adjust parameter values or input a certain sequence of residuals (often called �add factors�).

While these subjective adjustments will impact the forecasts, they still respect the prop-

erties of addition and multiplication and therefore ensure that forecasts are coherent.11 In

short, it seems reasonable to assume these forecasters are sophisticated enough to understand

addition and multiplication.

In the subsections below, we highlight three useful features of the SBF.

10Breaking these assumptions within a model is quite di�cult as it makes the model predictions highly
sensitive to small arbitrary changes, such as measuring outcomes in dollars versus cents.

11Klein (2018) provides a useful example of how these subjective adjustments are made. �After the
preparation of preliminary predictions from the most recently adjusted Wharton-EFU Model, there is a
discussion of the assumptions and properties of the prediction with business and government specialists. A
priori information on impending labor disputes, hedge purchasing, production bottlenecks, major economic
decisions and similar phenomena are then suggested for further modi�cation of parameter or residual values,
and a revised forecast is prepared.�
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A. Aggregation

Given a set of individuals, i = 1, 2, ..., n, there is no requirement that individuals must agree

with one another. Each individual may be described by a di�erent SBF Si,t+1. De�ne the

consensus expectation as E∗
t [·] ≡ 1

n

∑
iE

∗
i,t [·].

Lemma 1. There is a consensus SBF St+1 ≡ 1
n

∑
i Si,t+1 that satis�es E

∗
t [Xt+1] = Et [St+1Xt+1]

for all variables Xt+1.

For example, while each forecaster may have a di�erent model of how GDP, unemployment,

and in�ation interact, there will be a single SBF St+1 that applies to the consensus forecast

for all three variables. While we focus on an equal-weighted average across individuals,

this lemma can be trivially extended to any weighted average of individuals (e.g., a wealth-

weighted average).

We can also extend this idea of aggregation to asset pricing. Suppose Xt+1 is the payo�

for some asset and Pt is the current price of the asset.

Lemma 2. If E∗
i,t

[
M̃i,t+1X t+1

]
= Pt for all i, then there is a consensus M̃t+1 ≡

∑
i Si,t+1M̃i,t+1∑

i Si,t+1

that satis�es E∗
t

[
M̃t+1Xt+1

]
= Et

[
St+1M̃t+1Xt+1

]
= Pt.

Thus, if each individual has an M̃i,t+1 that prices the asset under her individual SBF Si,t+1,

then there is also a consensus M̃t+1 that prices the asset under the consensus SBF St+1.

Note that this consensus M̃t+1 does not depend on the speci�c payo� Xt+1 or price Pt,

meaning that the same M̃t+1 applies for any asset that is priced by each individual. Given

this property of aggregation, we will focus on a single aggregated agent for the rest of the

paper.

B. Log-normal representation

Proposition 1 tells us that an SBF exists. A natural next question is how we can �nd a

variable St+1 that matches a given set of subjective expectations. Given a multivariate Xt+1
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and subjective expectations E∗
t [Xt+1], we know that

Et [St+1Xt+1] = Et [Xt+1] + Covt (Xt+1, St+1) (4)

given the de�nition of covariance and the fact that Et [St+1] = 1. Thus, �nding an St+1 such

that E∗
t [Xt+1] = Et [St+1Xt+1] for all elements of Xt+1 simply requires �nding an St+1 that

has the correct objective covariance with Xt+1.

One solution is to represent the SBF as a linear projection onto the set of objective

shocks.

Lemma 3. Given a multivariate Xt+1 and subjective expectations E
∗
t [Xt+1], we have E

∗
t [Xt+1] =

Et [St+1Xt+1] for

St+1 = 1 + β′
tεt+1

βt = Σ−1
t (E∗

t [Xt+1]− Et [Xt+1])

εt+1 = Xt+1 − Et [Xt+1]

where Σt is the objective covariance matrix of the shocks εt+1.

For an element βj,t of the vector βt, a positive βj,t means that it is as if the agent is exagger-

ating the probability of positive shocks εj,t+1 and understating the probability of negative

shocks. The converse is true for βj,t < 0.

The bene�t of Lemma 3 is that it requires no assumptions about the distribution of

Xt+1. A potential limitation of Lemma 3 is that the projected SBF may be negative for

large magnitude shocks εt+1. Fortunately, equation (4) shows that if we have information

about the objective distribution of Xt+1, then we can estimate an SBF that is always non-

negative. In particular, if variables are objectively normally distributed, then we can specify

an SBF that is both tractable and always nonnegative. Let st+1 ≡ log (St+1).

Proposition 2. Given a multivariate Xt+1 and subjective expectations E∗
t [Xt+1], if the ob-

jective conditional distribution is Xt+1 ∼ N (Et [Xt+1] ,Σ) then E∗
t [Xt+1] = Et [St+1Xt+1]
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for

st+1 = −1

2
β′
tΣβt + β′

tεt+1

βt = Σ−1 (E∗
t [Xt+1]− Et [Xt+1])

εt+1 = Xt+1 − Et [Xt+1] .

In other words, if Xt+1 is conditionally multivariate normal, then we can write St+1 as

conditionally log-normal and the shocks to st+1 as a linear combination of the objective

shocks to Xt+1, i.e., β
′
tεt+1. The result is very similar to Lemma 3 but ensures that St+1 > 0.

Importantly, Proposition 2 does not require any assumptions about the agent's subjective

beliefs about the distribution (e.g., assuming the agent believesXt+1 is normally distributed).

As shown in equation (4), we only need to know the objective covariance between St+1 and

Xt+1 in order to ensure that Et [St+1Xt+1] matches the subjective E
∗
t [Xt+1].

The same logic holds if Xt+1 is not normal but is a function of normal variables. Suppose

Xt+1 = ft (εt+1) where ft (·) is a potentially time-varying function and εt+1 is objectively

multivariate standard normal.12 For example, Xt+1 could be a CES aggregator, Xt+1 =

(aρt + (Btεt+1)
ρ)

1/ρ
, or an indicator variable, Xt+1 = 1 {at +Btεt+1 > 0}.

Proposition 3. Given a multivariate Xt+1 = ft (εt+1) and subjective expectations E∗
t [Xt+1],

if the objective conditional distribution is εt+1 ∼ N (0, I) then E∗
t [Xt+1] = Et [St+1Xt+1] for

st+1 = −1

2
β′
tβt + β′

tεt+1

βt = h−1
t (E∗

t [Xt+1])

ht (β) ≡ Et [ft (β + εt+1)] .

In words, if Xt+1 is a function of normal shocks, then there is a log-normal SBF that

matches the subjective expectations, E∗
t [Xt+1] = Et [St+1Xt+1], and the shock to this log-

normal SBF is a linear combination of the objective shocks, β′
tεt+1. The details of the

12Assuming that εt+1 is standard normal rather than simply normal is WLOG. If Xt+1 = ft (ηt+1) where
ηt+1 ∼ N (µt,Σt), then this can always be expressed as Xt+1 = f̃t (εt+1) where f̃t (εt+1) ≡ ft

(
µt +Σ0.5

t εt+1

)
and εt+1 is standard multivariate normal.
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function ft (·) only a�ect the loadings βt. Speci�cally, the loadings depend on the inverse

of the ft (·) function. For example, if Xt+1 is log-normal, Xt+1 = exp (µt + Σ0.5εt+1), then

βt = Σ−1 [log (E∗
t [Xt+1])− log (Et [Xt+1])].

Note that Propositions 2 and 3 allow for a wide range of possible subjective expectations

E∗
t [Xt+1]. Given an objective process for Xt+1 that is conditionally normal or a function of

normal shocks, di�erent subjective expectations E∗
t [Xt+1] simply appear as di�erent loadings

βt in the log-normal SBF. In the subsection below, we show speci�c examples for extrapola-

tion, diagnostic expectations, and Bayesian learning about the mean and discuss the loading

βt associated with each model.

Appendix A provides two extensions to Lemma 3 and Propositions 2-3. First, we discuss

matching subjective expectations for many variables using a representation of the SBF that

only loads on a few shocks, rather than the entire vector of shocks εt+1. This is relevant for

our empirical applications. Second, we discuss the representation of St+1 when we want to

not only match the subjective expectations of the mean E∗
t [Xt+1] but also want to match

additional data on expected variances and covariances.

B.1. The SBF in simple expectation formation models

For intuition, consider the case of AR(1) real GDP (RGDP) growth,

gt+1 = µ+ ρ(gt − µ) + εt+1 (5)

where ρ > 0 and εt+1 ∼ N (0, σ2). For simplicity, we set the true mean of the process µ equal

to 0. From Proposition 2, subjective expectations of gt+1 can be represented by the log SBF

st+1 = −1
2

β2
t

σ2 + βtεt+1. Note that states with st+1 > 0 are states with St+1 > 1, meaning that

the SBF exaggerates the probability of these states. The converse is true for st+1 < 0 and

St+1 < 1.

The −1
2

β2
t

σ2 term is simply a normalization term that ensures Et [St+1] = 1. The impor-

tant component of st+1 is the loading βt on the objective shock εt+1. Di�erent models of
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expectation formation will imply di�erent βt.

Extrapolation Suppose the agent is extrapolative, meaning that the agent believes the

persistence is ρ∗ rather than ρ and expects next period growth to be ρ∗gt. The loading is

βEX
t =

ρ∗ − ρ

σ2
gt. (6)

Given ρ∗ > ρ, the loading is positive when gt > 0. When current growth is high, it is as if

the agent is exaggerating the probability of positive εt+1 and understating the probability of

negative εt+1. When current growth is low, it is as if the agent is exaggerating the probability

of negative εt+1 and understating the probability of positive εt+1.

Importantly, we do not require that the agent actually thinks in terms of distorted prob-

abilities. In this example, the agent does not intentionally exaggerate or understate certain

states of the world. The agent simply believes in a di�erent persistence parameter (ρ∗) than

what the econometrician estimates (ρ). The purpose of Proposition 2 is to highlight that

the econometrician can represent the agent's beliefs using the SBF St+1.

Diagnostic Expectations Suppose the agent has diagnostic expectations of future

growth. Following Bordalo, Gennaioli, and Shleifer (2018), the agent expects next period

growth to be ρgt + ρθεt, where θ > 0 re�ects how much the agent overreacts to the most

recent shock εt. In this case, the loading is

βDE
t =

θρ

σ2
εt. (7)

The loading βDE
t no longer depends on current growth, it only depends on the most recent

shock. When the recent shock εt is positive, it is as if the agent exaggerates the probability

of positive future εt+1 and understates the probability of negative εt+1.

Bayesian Learning Suppose we have a rational Bayesian agent who is learning about

the true mean of the process. Learning starts at t = 0 with a prior belief of µ∗
0 and initial

uncertainty h0. The agent updates her estimate µ∗
t every period, applying a Kalman gain
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Kt = h0

σ2+h0t
to every innovation.13 The agent expects next period growth to be ρgt +

(1− ρ)µ∗
t . This gives a loading of

βBL
t =

1

σ2

[
tKt

(
1

t

t−1∑
j=0

εt−j

)
+ (1− tKt)

µ∗
0

1− ρ

]
. (8)

The loading depends on a weighted average of the initial bias
µ∗
0

1−ρ
and the average of all

observed shocks. Over time, the weight placed in the initial bias deterministically shrinks

towards zero.

Comparing models Because Proposition 2 is so general, it provides a convenient

way to nest and compare extrapolation, diagnostic expectations, and Bayesian learning. For

extrapolation, the loading βt is correlated with current growth gt and the loading is persistent

if growth is persistent. For diagnostic expectations, the loading is correlated with the current

shock εt and the loading has zero persistence, regardless whether growth is persistent or not.

For Bayesian learning, the loading is correlated with the average of past shocks 1
t

∑t−1
j=0 εt−j

and the persistence of the loading is 1 − Kt. Given that Kt < 1/t, this means that the

loading is highly persistent as long as the agent has observed at least a few periods of data,

regardless whether growth is persistent or not.

In Section III.A, we empirically estimate βt and compare its properties with the predic-

tions of these three models.

C. Connection to excess returns

By framing subjective beliefs as a probability distortion, we can easily combine subjective

beliefs and preferences about di�erent states of the world. We denote the agent's preference

for payo�s in di�erent states of the world with M̃t+1. For example, in a consumption-based

asset pricing model, M̃t+1 would be e−ρ u′(Ct+1)
u′(Ct)

where ρ is the discount rate. Let Rf
t denote

the one-period return on a risk-free bond and let Rt+1 denote the one-period return on a

13The solution to the agent's learning problem is identical to learning the mean of an iid process zt =
gt − ρgt−1.
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risky asset. If the agent prices the risk-free bond and the risky asset, then

E∗
t

[
M̃t+1

]
Rf

t = 1 (9)

E∗
t

[
M̃t+1Rt+1

]
= 1. (10)

Proposition 4. Assume Re
t+1 ≡ Rt+1/R

f
t is log-normally distributed, St+1 is conditionally

log-normal, and M̃t+1 is conditionally log-normal. If E∗
t

[
M̃t+1Rt+1

]
= E∗

t

[
M̃t+1

]
Rf

t = 1,

then

log
(
E
[
Re

t+1

])
= Cov

(
−st+1, r

e
t+1

)
+ Cov

(
−m̃t+1, r

e
t+1

)
. (11)

Intuitively, Proposition 4 says that if the agent prices the risk-free bond and the risky asset,

then a high average Re
t+1 must be due to (i) the risky asset paying o� in states the agent

thinks are unlikely, Cov
(
−st+1, r

e
t+1

)
, and/or (ii) the risky asset paying o� in states the agent

does not prefer, Cov
(
−m̃t+1, r

e
t+1

)
.14 Appendix A.3 provides a slightly more complicated

relationship that holds without making any assumptions about the distribution of St+1, M̃t+1,

and Re
t+1.

Conveniently, equation (11) provides a clean separation of beliefs and preferences. Even

if we do not know m̃t+1, we can still estimate the unconditional mean E
[
Re

t+1

]
and the

unconditional covariance Cov
(
−st+1, r

e
t+1

)
using a time series forRe

t+1 and st+1. For example,

we can measure whether subjective beliefs about RGDP growth account for the majority of

the investment anomaly by estimating st+1 from survey expectations of RGDP growth and

comparing log
(
E
[
Re

t+1

])
to Cov

(
−st+1, r

e
t+1

)
.

Further, equation (11) holds even if st+1 and m̃t+1 are correlated. As an example, suppose

the agent has biased beliefs about RGDP growth and also has preferences about RGDP

growth. Then Cov
(
−st+1, r

e
t+1

)
will capture the magnitude of the agent's biased beliefs

and Cov
(
−m̃t+1, r

e
t+1

)
will capture the magnitude of the agent's preferences. If the agent

exaggerates about the probability of low growth states by a factor of 2 relative to high growth

states and prefers payo�s in low growth states 10 times as much as she prefers payo�s in

14For St+1, M̃t+1, and Re
t+1, lower case letters denote log values.
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high growth states, then Cov
(
−st+1, r

e
t+1

)
will be much smaller than Cov

(
−m̃t+1, r

e
t+1

)
.

Even if the researcher does not observe m̃t+1, the researcher will still correctly conclude that

Cov
(
−st+1, r

e
t+1

)
only accounts for a small amount of log

(
E
[
Re

t+1

])
.

II. Data

We use two sources of survey data to measure subjective expectations. The main source

of survey data used is the Survey of Professional Forecasters, which contains quarterly fore-

casts for a wide array of macroeconomic variables. Since 1981Q3, the Survey of Professional

Forecasters contains complete coverage for 15 economic variables: real GDP, real consump-

tion, industrial production, real residential investment, real non-residential investment, real

federal government spending, real state and local government spending, housing starts, cor-

porate pro�ts, CPI in�ation, the 3-month Treasury bill rate, the Aaa rate, the unemployment

rate, real change in private inventories, and real net exports. For all variables, we focus on

the four quarter ahead forecast.15 We calculate the consensus forecast as the average across

the individual-level forecasts.

For our analysis, we need to convert all 15 variables to stationary processes. For the �rst

nine variables, we calculate the implied forecasted growth by dividing the forecasted future

level by the most recently available level. The next four variables are already reported as

stationary variables, so we apply no changes. Finally, the last two variables (real change in

private inventories and real net exports) can potentially be zero, meaning that the annual

growth may not be stationary. Therefore, we use the forecasted future level divided by the

most recently reported real GDP to normalize the series.

The secondary source of data is the Blue Chip survey. The Blue Chip sample starts in

1988Q1. We consider the complete list of variables that (i) are not included in the Survey

of Professional Forecasters over our sample and (ii) have survey data since 1988Q1, which

15Note that CPI in�ation forecasts are reported as quarter-over-quarter growth rates, so we calculate the
forecasted annual growth rate using the geometric mean of forecasted quarterly growth out to t plus four
quarters.
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is a total of 9 variables. These are the prime rate, the fed funds rate, the mortgage rate,

LIBOR, and Treasury rates for �ve di�erent maturities (6-months, 1-year, 2-years, 5-years,

and 10-years). Just as we did for the Survey of Professional Forecasters, we focus on the

four quarter ahead forecasts and calculate the consensus forecast as the average across the

individual-level forecasts. Given that all variables are rates, we do not need to renormalize

for stationarity.

The realized outcomes for all interest rate variables are obtained from the Federal Reserve

Bank of St. Louis. The realized outcomes for all other variables are obtained from the real-

time data �les maintained by the Federal Reserve Bank of Philadelphia. Refer to Appendix

C for full details on each of the surveys and the data construction.

III. Application to macroeconomic forecasts

In this section, our goal is to demonstrate how utilizing tools from asset pricing opens new

doors for understanding subjective expectations. First, we are able to largely condense survey

expectations for 15 di�erent macroeconomic variables down to a single estimated SBF Ŝt+1

that is related to RGDP growth and the T-bill rate. Second, after condensing the survey

data, we can compare the estimated SBF to the predictions of common expectation-formation

models, in this case extrapolation, diagnostic expectations, and Bayesian learning about the

mean. Third, we show that the SBF allows us to predict subjective expectations for other

variables outside of our original 15 variable dataset, and we then con�rm the accuracy of

these predictions. Broadly, we �nd that the SBF Ŝt+1 is successful in unifying expectations

across many macroeconomic variables.

A. Condensing macroeconomic expectations

We study the consensus forecasts for the 15 macroeconomic variables contained in the Survey

of Professional Forecasters. Let E∗
t [Xt+1] denote this 15-variable vector. Figure 1 shows the
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correlation of these expectations. Importantly, our analysis does not require that variables

are uncorrelated. As one would expect, there is a wide range of correlations across these

variables. While some expectations are highly correlated (like rgdp and rcon, corr = .92),

some of them have no correlation, (like rgf and rnresin, corr = −.04), and some are nega-

tively correlated (like housing and rgsl, corr = −.59). The average pairwise correlation is

0.16.

We calculate statistical expectations using a VAR(1) model for Xt+1. Speci�cally, we

estimate

Xt+1 = A+B

(
Xt E∗

t [Xt+1]

)
+ εt+1 (12)

where εt+1 is a multivariate Gaussian shock with covariance matrix Σ.16 The statistical

expectations are then

Et [Xt+1] = a+B

(
Xt E∗

t [Xt+1]

)
. (13)

We include the survey expectations in equation (12) to ensure that our statistical expecta-

tions contain any information known to the forecasters. This ensures that any discrepancy

between E∗
t [Xt+1] and Et [Xt+1] is due to the statistical expectations being a better predictor

of Xt+1, and not from any informational advantage from the forecasters.17

From Proposition 2, we know that Et [St+1Xt+1] will perfectly replicate the survey expec-

tations for st+1 = −1
2
β′
tΣβt + β′

tεt+1 and βt = Σ−1 (E∗
t [Xt+1]− Et [Xt+1]). Our goal in this

section is to test whether we can replicate the survey expectations using a log SBF ŝt+1 based

on a smaller number of variables. Speci�cally, given any subset of variables X̂t+1 ⊂ Xt+1,

we can estimate the log SBF that perfectly matches the expectations for X̂t+1,

ŝt+1 = −1

2
β̂′
tΣ̂β̂t + β̂′

tε̂t+1 (14)

where ε̂t+1 is the vector of objective shocks to X̂t+1, Σ̂ is the covariance matrix of ε̂t+1, and

16Appendix G shows that we �nd very similar results if we assume Xt+1 is log-normal rather than normal.
17For example, if the survey forecasts are the best possible predictor of future Xt+1, then our method will

simply give Et [Xt+1] = E∗
t [Xt+1].
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β̂t = Σ̂−1
(
E∗

t

[
X̂t+1

]
− Et

[
X̂t+1

])
. Then, we can estimate synthetic expectations based on

ŝt+1 for the remaining variables as
18

Ê∗
t [Xt+1] ≡ Et

[
Ŝt+1Xt+1

]
= Et [Xt+1] + Cov (εt+1, ε̂t+1) β̂t. (15)

Appendix A.1 provides a deeper discussion of the theoretical properties of these synthetic

expectations. In this section, we will focus on their empirical accuracy in replicating survey

expectations.

We use Figure 1 to gauge the size of our subset X̂t+1. The pairwise correlations are

clustered by a hierarchical tree method, which iteratively merges clusters based on their

similarity.19 Two natural clusters of variables arise with similar correlations. This motivates

us to summarize the expectations data using a distortion based on two variables.20 We

choose RGDP growth (rgdp) and the T-bill rate (tbill) as our two variables, as these two

variables lie at the center of the two large clusters in Figure 1. Economically, these two

variables are fairly easy to understand given their connection to overall economic activity

and monetary policy.21

Table I evaluates the �t of these synthetic expectations. The �rst column shows the av-

erage R2 from regressing E∗
t [Xj,t+1] on Ê∗

t [Xj,t+1] for our 15 variables j. Overall, synthetic

expectations based on ŝt+1 explain roughly 2/3 (64.6%) of all variation in the 15 macroeco-

nomic expectations. However, this could be due to E∗
t [Xj,t+1] being similar to Et [Xj,t+1].

As shown in equation (15), even with no distortion, synthetic expectations would still vary

due to variation in Et [Xj,t+1].

To better evaluate the role of the distortion, we note that equation (15) can be rewritten

18The calculation of Et

[
Ŝt+1Xt+1

]
utilizes the formula for the mean of a normal log-normal mixture.

19Given that unemployment is countercyclical, we use negative subjective expectations of unemployment
when clustering the correlation matrix.

20The �gure also suggests that one could potentially consider a third, smaller cluster represented by either
housing starts or real residential investment. For parsimony, we focus on the two larger clusters.

21In Appendix E, we show that RGDP growth and the T-bill rate are not only intuitive variables for un-
derstanding beliefs about the broader macroeconomy, but are also quantitatively quite close to best possible
pair of variables for condensing the Survey of Professional Forecasters data.
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Figure 1. Correlation matrix of expectations. This �gure shows the pairwise correlation

of the survey expectations of 15 variables in the Survey of Professional Forecasters for 1981Q3-2022Q2.

The variables are grouped using a simple hierarchical tree method. We use negative unemployment in the

correlation matrix so that it is positively related to other typical business-cycle variables.

as

Ê∗
t [Xt+1]− Et [Xt+1] = Cov (εt+1, ε̂t+1) Σ̂

−1
(
E∗

t

[
X̂t+1

]
− Et

[
X̂t+1

])
. (16)

The second column of Table I tests how well the synthetic bias, measured as Ê∗
t [Xt+1] −

Et [Xt+1], matches the survey bias, E
∗
t [Xt+1]−Et [Xt+1]. Across the 15 variables, we �nd that

nearly half (47.2%) of the variation in survey bias can be explained by biased expectations

of just two variables, RGDP growth and the T-bill rate
(
E∗

t

[
X̂t+1

]
− Et

[
X̂t+1

])
, and the

objective covariance of shocks to the remaining 13 variables with shocks to RGDP growth

and the T-bill rate
(
Cov (εt+1, ε̂t+1) Σ̂

−1
)
.

To gauge the performance of our synthetic expectations, we compare our results to less

restrictive versions of equation (16). The most straightforward test is a regression

E∗
t [Xt+1]− Et [Xt+1] = α + Γ

(
E∗

t

[
X̂t+1

]
− Et

[
X̂t+1

])
+ ηt. (17)

This is identical to equation (16), except that the matrix of coe�cients Γ is now �exible,
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Table I

Condensing the Survey of Professional Forecasters
This table evaluates the ability of the synthetic expectations formed from ŝt+1 to explain forecasts for 15 variables from the
Survey of Professional Forecasters. Column 1 shows the average R2 fromof regressions of survey expectations (E∗

t [Xj,t+1]) on

synthetic expectations (Ê∗
t [Xj,t+1]) for each of the 15 di�erent variables. Column 2 shows the average R2 from regressions of

E∗
t [Xj,t+1]−Et [Xj,t+1] on Ê∗

t [Xj,t+1]−Et [Xj,t+1] where Et [Xj,t+1] is the statistical expectation. For comparison, Column
3 shows the average R2 of the best linear predictor of E∗

t [Xj,t+1] − Et [Xj,t+1] using the individual biases in rgdp and tbill

coming from equation (17) and Columns 4 and 5 show the explanatory power of the �rst two principal components of the 15
biases E∗

t [Xt+1]− Et [Xt+1].

E∗
t [Xt+1] E∗

t [Xt+1]− Et [Xt+1]

Ê∗
t [Xt+1] Ê∗

t [Xt+1]− Et [Xt+1] Best Linear Predictor PC-1 PC-2

R2(%) 64.6 47.2 52.3 43.0 63.8

rather than being determined by the objective covariance of shocks. This speci�cation rep-

resents the best linear prediction one can achieve using RGDP growth and T-bill rate biases,

and thus, provides an upper bound of how much can one explain given these two variables.

Averaging across all variables, we �nd that this regression approach gives an R2 of 52.3%.

Therefore, our estimated SBF ŝt+1 gives an average R2 (47.2%) that is quite close to this

upper bound (52.3%).

Let's look at an even more challenging test. While the �rst benchmark evaluates the

distortion relative to the best linear predictor of using RGDP growth and T-bill rate biases,

we can also show that the distortion performs well relative to any two arbitrary time series

Λt. Our synthetic expectations attempt to characterize the 15 biases E∗
t [Xt+1] − Et [Xt+1]

using two time series E∗
t

[
X̂t+1

]
− Et

[
X̂t+1

]
and a �xed matrix Cov (εt+1, ε̂t+1) Σ̂

−1 based

on the objective covariances. The �nal two columns in Table I show a more general upper

bound based on principal components analysis (PCA),

E∗
t [Xt+1]− Et [Xt+1] = α + ΓΛt. (18)

The �rst two principal components of the 15 biases explain 63.8% of the variation, and the

�rst principal component explains 43.0%. This means that the estimated SBF performs

better than the �rst principal component of these series and captures roughly four �fths of

the maximum possible R2, 63.8%.
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Table II

Comparing synthetic expectations and the Survey of Professional Forecasters
This table shows the correlation of each of the Survey of Professional Forecasters survey expectations and biases with their
respective synthetic expectations and biases formed from the log SBF ŝt+1. The �rst column shows the correlation of survey
expectations with synthetic expectations for the 15 variables. The second column shows the correlation of the survey biases
with the synthetic biases for the same 15 variables. Note that the log SBF ŝt+1 is formed only using RGDP growth and the
T-Bill rate biases.

Xj,t+1 Corr
(
E∗

t [Xj,t+1] , Ê
∗
t [Xj,t+1]

)
Corr

(
E∗

t [Xj,t+1]− Et [Xj,t+1] , Ê
∗
t [Xj,t+1]− Et [Xj,t+1]

)
rgdp 1 1
rcon 0.8891 0.8695
cpi 0.6122 0.3941

unempl 0.8973 0.6131
indp 0.7141 0.8324
tbill 1 1
aaa 0.9692 0.4792

rnresin 0.7214 0.8007
rresinv 0.7143 0.6287
rgf 0.8464 0.5976
rgsl 0.8165 0.4270

housing 0.5784 0.3515
rcbi 0.4977 0.7479

rexport 0.9367 0.5234
cprof 0.6273 0.5744

Table II shows a detailed comparison between the synthetic expectations and the survey

expectation expectations at the individual variable level. The correlation between Ê∗
t [Xj,t+1]

and E∗
t [Xj,t+1] is larger than 0.50 for all variables, and larger than 0.70 for nine out of

the 13 independent variables. Perhaps more relevant is the ability of the synthetic biases

Ê∗
t [Xj,t+1]−Et [Xj,t+1] to match the survey biases E

∗
t [Xj,t+1]−Et [Xj,t+1], as this comparison

directly captures the ability of the SBF to capture deviations from the statistical expecta-

tions. The correlation between Ê∗
t [Xj,t+1] − Et [Xj,t+1] and E∗

t [Xj,t+1] − Et [Xj,t+1] is also

high, with an average correlation across variables of 0.66 and nine out of the 13 independent

variables having a correlation larger than 0.50.

It is important to emphasize the key bene�ts of the SBF relative to the two benchmarks.

First, the SBF does not require survey data on all variables in order to calculate synthetic

expectations. As shown in equations (17) and (18), PCA and the best linear �t require survey
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data E∗
t [Xt+1] for the entire vector Xt+1 in order to estimate Γ and Λt. In contrast, equation

(16) only requires survey expectations for the subset of variables E∗
t

[
X̂t+1

]
and the objective

covariance matrix of shocks, the latter of which can be estimated by the researcher. Because

of this, Section III.B shows that we can use our estimated SBF Ŝt+1 to estimate synthetic

expectations Et

[
Ŝt+1Yt+1

]
for additional variables Yt+1 without requiring any additional

survey data.

Further, because the SBF uses the objective covariance matrix, it can be translated more

easily to economic models. If we can model the biases in these two variables E∗
t

[
X̂t+1

]
,

then we can readily explain the biases in the other variables. For example, overstating

RGDP growth by 1pp causes agents to understate unemployment by 0.51pp because of the

empirical covariance between RGDP growth and unemployment. This contrasts with other

methods like best linear estimates, which would require a speci�c mechanism to explain why

agents perceive a certain link between RGDP growth and unemployment. Similarly, using

PCA in the context of a model would require interpreting the principal components and

understanding the weight matrix (i.e., why does the unemployment bias load on the �rst PC

with a certain coe�cient).

Finally, our method also allows for the study of biased beliefs about correlated variables.

In cases where the biases in RGDP growth and T-bill rate are correlated, traditional methods

like the best linear prediction may struggle to distinguish between them. For instance, if

an agent is understating future unemployment, it may be unclear whether this is due to

overstating the chance of an expansion (RGDP growth) or overstating the likelihood of

accommodative monetary policy (T-bill rate). Our method captures magnitudes, allowing

us to di�erentiate between these scenarios. Even if the biases in RGDP growth and the T-bill

rate are correlated, we can discern their relative importance based on the magnitude of each

bias and the comovement between each variable and unemployment. This enables a more

nuanced understanding of the underlying drivers of forecast biases across various economic

indicators.
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To highlight that this scenario of correlated biases is not just a hypothetical, the top panel

of Figure A.1 plots the biases E∗
t

[
X̂t+1

]
− Et

[
X̂t+1

]
for these two variables. Appendix D

discusses these series in more detail along with the estimated time series ŝt+1.

A.1. Connection to expectation-formation models

As mentioned above, a key bene�t of our SBF ŝt+1 relative to PCA or best linear predictions

is that ŝt+1 can be easily translated into models of expectation formation. To do that, we

can simply compare the estimated loadings βt with the loadings predicted by the common

models.

In Section I.B.1, we discussed how three common expectation-formation mechanisms

� extrapolation, diagnostic expectations, and Bayesian learning � translate into implied

loadings βt. By equation (6), the implied loadings of the extrapolation model βEX
t are

proportional to the current value X̂t and their persistence is thus equal the persistence of

X̂t. Similarly, by equation (7), the loadings implied by diagnostic expectations βDE
t should

be proportional to the most recent shocks ε̂t, and they should have 0 persistence. Finally, by

equation (8), the loadings implied by Bayesian learning βBL
t should be correlated with the

average of all past shocks 1
t

∑t
j=1 ε̂j and the persistence of the loadings (equal to 1 −Kt >

(t− 1)/t) should be very high as long as at least a few observations have occured.

While none of the models performs perfectly, our estimated loadings more closely match

the predictions of the extrapolation model than those of the other two. To test this, we

�rst examine the correlation of loadings with the current values of the underlying variables

and their recent shocks. In line with the prediction of the extrapolation model, we �nd

that the rgdp loading is signi�cantly correlated with current RGDP growth (0.29∗) and the

tbill loading is signi�cantly correlated with the current T-bill rate (0.45∗∗∗). In contrast,

the correlations of each loading with the recent rgdp shock (0.20) and the tbill shock (0.12)

are smaller and statistically insigni�cant. Similarly, the correlation of each loading with the

average of past rgdp shocks and the average of past tbill shocks are smaller and insigni�cant
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(−0.09 and 0.33, respectively).22

We then assess the persistence of the estimated loadings, �nding that the rgdp loading has

an annual persistence of 0.32∗∗∗ and the tbill loading has an annual persistence of 0.46∗∗∗.

These values do not align with the prediction of diagnostic expectations, which predicts

zero persistence. Similarly, these estimated persistences do not align with Bayesian learning,

which predicts persistence higher than t−1
t
, unless we impose that the agent has only observed

2 periods of data. The persistence of RGDP growth and the T-bill rate are 0.08 and 0.88∗∗∗,

which means that the predictions of the extrapolation model are also quantitatively di�erent

from the observed persistence. However, the qualitative prediction of extrapolation that the

persistence of β̂t should be increasing in the persistence of X̂t does hold (i.e., the tbill loading

is more persistent than the rgdp loading).

B. Forming expectations for other variables

Beyond condensing existing survey data, a bene�t of our estimated log SBF ŝt+1 is that we

can form synthetic expectations for other variables even if we do not have survey expec-

tations available for those variables. For example, the Survey of Professional Forecasters

contains relatively few �nancial variables. Despite this, we can use our estimated ŝt+1 to

form synthetic expectations for a variety of �nancial variables, such as the mortgage rate

or the long-term risk-free rate (e.g., the 10-year Treasury rate). In this subsection, we form

synthetic expectations for nine �nancial variables without using any survey expectations for

these variables. We then evaluate these synthetic expectations by comparing them to Blue

Chip survey expectations for these nine variables.

Let Yt+1 represent the nine �nancial variables. These variables are the prime rate, the

fed funds rate, the mortgage rate, LIBOR, and Treasury rates for �ve di�erent maturities

(6-months, 1-year, 2-years, 5-years, and 10-years). We choose these variables as this is the

22For these tests involving the average of past shocks, we use all shocks back to 1981Q3 (i.e., the beginning
of our sample). In other words, we take as given that the agent has some initial prior at the beginning of
our sample and we then assume that she updates her beliefs based on the observed data since 1981Q3.
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maximum set of variables that are (i) not included in the Survey of Professional Forecasters

data and (ii) are included in the Blue Chip data, which will allow us to evaluate the synthetic

expectations.

We calculate synthetic expectations Ê∗
t [Yt+1] solely using realized data and the Survey

of Professional Forecasters survey data. First, we estimate a VAR(1) model for Yt+1,
23

Yt+1 = ay +By

(
Yt Xt E∗

t [Xt+1]

)
+ εy,t+1 (19)

Et [Yt+1] = ay +By

(
Yt Xt E∗

t [Xt+1]

)
. (20)

To ensure our statistical expectations contain as much current information as possible, we

include the current value Xt and the survey expectations E∗
t [Xt+1] for the Survey of Pro-

fessional Forecasters variables in equation (19). Then, using our log SBF ŝt+1 estimated

from the Survey of Professional Forecasters RGDP growth and T-bill rate expectations, we

calculate our synthetic expectations for Yt+1 as

Ê∗
t [Yt+1] ≡ Et

[
Ŝt+1Yt+1

]
= Et [Yt+1] + Cov (εy,t+1, ε̂t+1) β̂t

= Et [Yt+1] + Cov (εy,t+1, ε̂t+1) Σ̂
−1
(
E∗

t

[
X̂t+1

]
− Et

[
X̂t+1

])
. (21)

Importantly, we do not use any survey expectations of Yt+1 in the construction of Ê∗
t [Yt+1].

The intuition for equation (21) is fairly straightforward. The term Cov (εy,t+1, ε̂t+1) Σ̂
−1

is simply Covt

(
Yt+1, X̂t+1

)
V art

(
X̂t+1

)−1

, i.e., the slope coe�cients of the conditional re-

gression of Yt+1 on X̂t+1. Thus, synthetic expectations take the observed bias for X̂t+1 (i.e.,

E∗
t

[
X̂t+1

]
− Et

[
X̂t+1

]
) and estimate the bias for Yt+1 based on the objective relationship

between Yt+1 and X̂t+1.

How well do these synthetic expectations match actual subjective expectations for these

nine variables? In Table III, we compare the synthetic expectations Ê∗
t [Yt+1] to subjective

expectations measured from Blue Chip, E∗
t [Yt+1]. The �rst column of Table III shows that

23Appendix G shows that we �nd similar results if we estimate a VAR(1) process for the log of the �nancial
variables rather than the level.
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Table III

Synthetic expectations out of sample - Blue Chip survey expectations
This table evaluates the ability of the log SBF ŝt+1 formed from only the RDGP growth and T-Bill rate biases to generate
synthetic expectations for Blue Chip variables. The �rst column shows the correlation of the time series of the Blue Chip
survey expectations E∗

t [Yj,t+1] with the synthetic expectations Ê∗
t [Yj,t+1] constructed from ŝt+1. The second column shows

the correlation of the survey biases with the synthetic biases for the same variables.

Yj,t+1 Corr
(
E∗

t [Yj,t+1] , Ê
∗
t [Yj,t+1]

)
Corr

(
E∗

t [Yj,t+1]− Et [Yj,t+1] , Ê
∗
t [Yj,t+1]− Et [Yj,t+1]

)
prime 0.9434 0.8573
fedfunds 0.9455 0.8488
mortgage 0.9304 0.4869
tbill-1yr 0.9309 0.8427
tbill-6m 0.9322 0.8585

tnote-10yr 0.9479 0.5229
tnote-5yr 0.9434 0.6784
tnote-2yr 0.9343 0.7942
libor-3m 0.9110 0.8134

the synthetic expectations are highly correlated with the actual survey expectations. For

all nine variables, the correlation is above 0.90. When we focus speci�cally on the bias in

expectations, E∗
t [Yj,t+1]−Et [Yj,t+1], we still �nd a notable correlation, on average 0.74. This

is similar to the performance of the synthetic expectations for the Survey of Professional

Forecasters variables in Table II, indicating that the log SBF ŝt+1 is similarly e�ective in

summarizing biases in both the Survey of Professional Forecasters and the Blue Chip data.

This extension is non-trivial as the two groups of forecasters could potentially have di�erent

beliefs, which would generally make it harder to �nd a single SBF that accurately summarizes

the expectations of both groups.

To push this idea of jointly explaining the Survey of Professional Forecasters and the

Blue Chip forecasts further, Table IV tests how well our log SBF ŝt+1 based on two variables

summarizes the combined 24 forecasts from both groups. Let Zt+1 be the union of the

15 Survey of Professional Forecasters variables Xt+1 and the 9 Blue Chip variables Yt+1.

Overall, we �nd that the synthetic expectations account for the majority of the variation in

the survey expectations, with an average R2 of 72.0%. If we focus on biases in expectations,

E∗
t [Zt+1]− Et [Zt+1], the synthetic expectations account for half of all variation, 50.3%.
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The last three columns of Table IV compare our results to the upper bounds implied by

the best linear predictor and PCA. Just as in equation (16), the synthetic bias for each of

our 24 variables is equal to a linear combination of the bias in RGDP growth expectations

and T-bill rate expectations, where the coe�cients are determined entirely by the objective

covariance of shocks. We can compare this to the best linear predictor from a regression,

E∗
t [Zt+1]− Et [Zt+1] = αz + Γz

(
E∗

t

[
X̂t+1

]
− Et

[
X̂t+1

])
+ ηz,t (22)

where the coe�cient matrix Γz is unrestricted. We �nd that the average R2 produced by the

synthetic expectations (50.3%) is quite close to the upper bound implied by the best linear

predictor of 55.0%.

Similarly, the synthetic expectations perform well even when compared to the more gener-

alized upper bound implied by PCA. By applying PCA to the expanded set of all 24 variables,

the biases are now allowed to depend on any time series Λz,t and use any coe�cient matrix

Γz,

E∗
t [Zt+1]− Et [Zt+1] = αz + ΓzΛz,t. (23)

The fourth column of Table IV shows that the synthetic expectations outperforms the �rst

principal component and achieves more than three fourths of the maximum possible R2 of

66.4%.

Overall, we �nd that the log SBF ŝt+1 manages to (i) accurately predict subjective ex-

pectations and biases for other variables without using any survey data on those variables

and (ii) performs nearly as well as theoretical upper bounds in condensing biases in many

expectations down to just biases in two expectations. The �rst item e�ectively acts as an

out of sample test for the SBF. The second item reinforces the �nding from Section III.A

that the distinction between subjective expectations and statistical expectations for many

variables � in this case 24 variables � can largely be explained by beliefs about a few key

variables and the objective relationships between variables.
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Table IV

Condensing Blue Chip and the Survey of Professional Forecasters
This table evaluates the ability of the synthetic expectations Ê∗

t [Zt+1] formed from ŝt+1 to explain the 24 Blue Chip + Survey
of Professional Forecasters variables E∗

t [Zt+1]. Column 1 shows the average R2 from regressions of the survey expectations

E∗
t [Zj,t+1] on Ê∗

t [Zj,t+1] for each of the 24 di�erent variables. Column 2 shows the average R2 from regressions of the survey

biases E∗
t [Zj,t+1]−Et [Zj,t+1] on the synthetic biases Ê∗

t [Zj,t+1]−Et [Zj,t+1]. For comparison, Column 3 shows the average
R2 of the best linear predictor of E∗

t [Zj,t+1]−Et [Zj,t+1] using the individual rgdp and tbill biases coming from equation (22)
and Columns 4 and 5 show the explanatory power of the �rst two principal components of the 24 biases E∗

t [Zj,t+1]−Et [Zj,t+1].

E∗
t [Zt+1] E∗

t [Zt+1]− Et [Zt+1]

Ê∗
t [Zt+1] Ê∗

t [Zt+1]− Et [Zt+1] Best Linear Predictor PC-1 PC-2

R2(%) 72.0 50.3 55.0 47.4 66.4

IV. Decomposing excess returns

In this section, we demonstrate how framing subjective expectations using an SBF is useful

for studying asset prices. In particular, by summarizing subjective expectations for many

variables into a single distortion, we can easily integrate subjective expectations into asset

pricing equations, which allows us to distinguish the roles of beliefs versus preferences. This

section applies this methodology to the Fama-French factors from Fama and French (2015),

to the behavioral factors constructed in Daniel, Hirshleifer, and Sun (2020), and also to a

comprehensive set of anomalies compiled in Chen and Zimmermann (2022).24 In each case,

we provide evidence that the belief-based component plays an important role in the excess

returns of these anomalies.

Proposition 4 shows a simple way to decompose the excess returns of an asset into the

belief-based component � measured through the SBF � and the preference-based or risk-

based component. By assuming log-normality, we can express the average excess return

as

log
(
E
[
Re

t+1

])
= Cov

(
−st+1, r

e
t+1

)
+ Cov

(
−m̃t+1, r

e
t+1

)
. (24)

To give an analogy for this decomposition, this exercise is similar to asset pricing papers that

estimate an SDF to match one set of assets and then measure whether that SDF accounts for

24Details on the construction of annual returns are shown in Appendix F.
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the excess returns of some other set of test assets. In this case, we are estimating a distortion

st+1 that accurately describes one set of data � subjective expectations of macroeconomic

variables � and then testing whether this distortion can quantitatively account for the excess

returns of the test assets.

At �rst glance, this approach may seem reminiscent of research arguing that future

returns are correlated with qualitative measures of �sentiment.�25 While our approach is

related to this sentiment literature, it importantly addresses issues with sentiment and risk

being correlated. Given a measure of sentiment that is correlated with future returns, there

is always a concern whether sentiment is simply correlated with risk, e.g., sentiment may be

low in a recession while risk is high.

Fortunately, decomposition (24) holds even if st+1 and m̃t+1 are correlated. This is be-

cause Cov
(
−st+1, r

e
t+1

)
captures the magnitude of the agent's biased beliefs and Cov

(
−m̃t+1, r

e
t+1

)
captures the magnitude of the agent's preferences. Taking the example from Section I.C,

if the agent exaggerates about the probability of low RGDP growth states by a factor of

2 relative to high growth states and prefers payo�s in low RGDP growth states 10 times

as much as she prefers payo�s in high growth states, then Cov
(
−st+1, r

e
t+1

)
will be much

smaller than Cov
(
−m̃t+1, r

e
t+1

)
. In this case, a researcher who only knows st+1 and ret+1

would still correctly conclude that Cov
(
−m̃t+1, r

e
t+1

)
accounts for most of the excess return.

By addressing this issue of correlated beliefs and risk, our approach highlights the bene-

�ts of a quantitative SBF compared to qualitative measures of sentiment. Additionally, our

estimated SBF does not depend on a speci�c model of sentiment. The SBF is directly mea-

sured from survey data and the objective covariance matrix and can potentially encompass

two or more behavioral models of sentiment.

Our approach also builds on previous work using analyst expectations for individual stock

returns to study anomalies (Engelberg, McLean, and Ponti�, 2020; Jensen, 2023; De la O,

Han, and Myers, 2024), and provides two useful features. First, since we do not require

25See Baker and Wurgler (2006) and Kumar and Lee (2006) for early examples in this literature and
Bordalo et al. (2023) as a recent example suggesting that LTG is correlated with future returns.
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speci�c survey expectations about the assets in question, we remove the sample limitations

associated with stock-level analyst return expectations, which are generally only available

post-2000. Second, rather than using survey expectations for di�erent sets of stocks for each

anomaly, we show that a single SBF based on beliefs about just two macroeconomic variables

is able to account for approximately half of all excess returns across many anomalies.

In a sense, our SBF captures the best of both worlds. It provides a single variable that

can potentially account for many di�erent anomalies, similar to the sentiment literature.

At the same time, it maintains the quantitative bene�ts of previous work on analyst return

expectations, as risk and biased beliefs can be distinguished through the use of covariance

decompositions rather than correlations.

A. Fama-French factors

We �rst evaluate the four Fama-French anomalies.26 While it is hard to directly measure

the risk component involving m̃t+1, we can measure the belief-based component using our

estimated SBF ŝt+1. We use the same estimated SBF ŝt+1 as the previous sections, which

is derived from the subjective expectations for RGDP growth and the T-bill rate and it is

available from 1981Q1 to 2022Q2.

Figure 2 shows the average excess returns log
(
E
[
Re

j,t+1

])
and the belief component

denoted as Cov
(
−ŝt+1, r

e
j,t+1

)
for each the four anomalies over the same sample. Despite

not using any information about anomaly returns in the construction of ŝt+1, we see that

Cov
(
−ŝt+1, r

e
j,t+1

)
gives reasonable values for annual anomaly returns of 3.7pp to 8.8pp. For

each anomaly, we �nd a positive Cov
(
−ŝt+1, r

e
j,t+1

)
that is quantitatively large enough to

explain the entire observed average excess return. In other words, the excess returns on these

anomalies can be explained by the fact that these anomalies tend to pay o� in states of the

world that forecasters appear to underestimate.

26All four long-short return portfolios are taken from Ken French's website and compounded into annual
returns for the same sample as the distortion, 1981-2022. Appendix F contains details on the portfolio
construction.
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Figure 2. Fama-French factors and their covariance with the SBF. Using the log SBF
ŝt+1, this �gure shows the decomposition (24) of excess returns for each of the Fama-French cross-sectional

factors . The blue bars show the average excess return log
(
E
[
Re

t+1

])
of the size, value, pro�tability, and

investment factors respectively. The red bars show the portion of the average return attributable to the

covariance of the excess return with the log SBF Cov
(
−ŝt+1, r

e
t+1

)
.

Notably, we do �nd a mismatch between the average excess return and the belief compo-

nent for the size anomaly, where Cov
(
−ŝt+1, r

e
j,t+1

)
is several times larger than log

(
E
[
Re

j,t+1

])
.

This may be due to the average return on the size anomaly being notably smaller than

the other anomalies over this sample. Or, this could indicate a negative risk component

Cov
(
−m̃t+1, r

e
j,t+1

)
.

B. Behavioral factors

Since the above results suggest that some of the Fama-French factors can be explained with

current survey expectations, it is worth illustrating the ability of our SBF ŝt+1 to explain

behavioral factors. Daniel, Hirshleifer, and Sun (2020) propose two behavioral factors that

can span a signi�cant subset of the Fama-French factors. They show that the FIN factor,

constructed as the return spread between recent issuers and repurchasers, together with

the PEAD factor, constructed as the returns spread between �rms with positive earnings

surprises and �rms with negative earnings surprises, together account for a wide range of
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Figure 3. Behavioral factors and their covariance with the SBF. Using the log SBF

ŝt+1, this �gure shows the decomposition (24) of excess returns for each of the behavioral factors from

Daniel, Hirshleifer, and Sun (2020). The blue bars show the average excess return log
(
E
[
Re

t+1

])
of the

PEAD (Post-Earning Announcement Drift) and FIN (Financing) factors. The red bars show the portion of

the average return attributable to the covariance of the excess return with the log SBF Cov
(
−ŝt+1, r

e
t+1

)
.

anomalies. Both factors are motivated by behavioral stories, one related to the four-day

response to earnings surprises and one related to long-horizon mispricing.

Given the behavioral motivation of these factors, we are interested in how well our SBF

ŝt+1 can explain these excess returns. In particular, our SBF is based on one-year expec-

tations, which Daniel, Hirshleifer, and Sun (2020) would denote as �long-horizon.� The

short-horizon factor (PEAD) is intended to capture �high frequency� biases.

Figure 3 shows the average excess returns of the behavioral factors FIN and PEAD

and their covariance with our SBF −ŝt+1. We observe that our SBF explains the majority

of the excess returns from the �nancing factor, accounting for 93% of the average excess

returns generated by the factor. This evidence supports a behavioral explanation for the

�nancing factor and provides evidence against the idea that the excess return on FIN is

mainly due to a rational risk premium. On the other hand, Figure 3 shows that our SBF

has nearly no comovement with the short-horizon PEAD factor, with Cov
(
−ŝt+1, r

e
j,t+1

)
being -0.67pp compared to the observed 6.8pp average excess return. This is consistent
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with the fact that our SBF ŝt+1 is estimated from one-year expectations rather than high-

frequency expectations. In this case, the average excess return would need to be explained by

belief distortions not captured by our one-year subjective expectations or by a risk premium

Cov
(
−m̃t+1, r

e
j,t+1

)
.

C. Large set of anomalies

We next consider how the belief distortion performs when taken to a wide range of anomalies

as constructed in Chen and Zimmermann (2022). There are 22 categories of anomalies

available for our 1981Q1 to 2022Q2 sample. Each category generally contains multiple

individual anomalies as there are typically multiple ways to measure the underlying economic

variable, e.g., four di�erent ways to measure leverage. To reduce noise, we calculate the

average log
(
E
[
Re

j,t+1

])
and the average Cov

(
−ŝt+1, r

e
j,t+1

)
across all anomalies j in each

category.27 Figure 4 shows the results.28

How can one summarize these �ndings across categories? One useful method is to measure

how much di�erences in log
(
E
[
Re

j,t+1

])
across categories is associated with di�erences in

Cov
(
−ŝt+1, r

e
j,t+1

)
. Consider a simple two-equation regression framework,

Cov
(
−st+1, r

e
j,t+1

)
= αs + γs log

(
E
[
Re

j,t+1

])
+ ηj,s (25)

Cov
(
−m̃t+1, r

e
j,t+1

)
= αm + γm̃ log

(
E
[
Re

j,t+1

])
+ ηj,m̃. (26)

27To avoid categories having only a single anomaly, we combine some categories based on conceptual
similarity. For example, we combine �Pro�tability� and �Pro�tability alt� into a single category given that
�Pro�tability Alt� contains only a single anomaly over our sample. The only exception is �Size�, which only
contains a single anomaly but is not combined with any other category given its historical importance.

28Note that the trading strategy details di�er between Fama and French (2015) and Chen and Zimmermann
(2022). For example, Fama and French (2015) measure their pro�tability factor RMW using a bivariate sort
on pro�tability and size and averaging the results across size. In comparison, Chen and Zimmermann (2022)
use a univariate sort based solely on pro�tability. Because of implementation di�erences and the fact that
Chen and Zimmermann (2022) provide multiple ways to de�ne pro�tability, the results for categories like
�pro�tability� and �investment� in Figure 4 may di�er from the values for the individual anomalies in Figure
2. Importantly, both results use the same log SBF ŝt+1. Given that both methods are plausible ways to
measure the pro�tability anomaly, we show both sets of results and highlight that under both methods we
�nd a positive and quantitatively large comovement between the excess return and −ŝt+1.
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Figure 4. Anomalies and their covariance with the SBF. Using the log SBF ŝt+1,

this �gure shows the decomposition of excess returns for the Chen and Zimmermann (2022) anomalies.

The x-axis shows the average excess return log
(
E
[
Re

t+1

])
of the anomaly portfolios. The y-axis shows

Cov
(
−ŝt+1, r

e
t+1

)
, which measures how much of the average excess returns is attributable to the covariance

with the log SBF ŝt+1. The line in blue shows the slope of a linear regression of Cov
(
−ŝt+1, r

e
t+1

)
on

log
(
E
[
Re

t+1

])
as in equation (25). The line in red shows the slope of the same regression weighted by the

number of anomalies in each category.

From equation (24), we know that

γs + γm̃ = 1.

In other words, a one unit increase in log
(
E
[
Re

j,t+1

])
must correspond to a one unit increase

in Cov
(
−st+1, r

e
j,t+1

)
+ Cov

(
−m̃t+1, r

e
j,t+1

)
, and γs and γm̃ tell us whether it is primarily

Cov
(
−st+1, r

e
j,t+1

)
that increases or primarily Cov

(
−m̃t+1, r

e
j,t+1

)
that increases. Using our

estimated −ŝt+1, Figure 4 shows that regression (25) gives a coe�cient γs equal to 0.561

when each category is weighted equally. If we use a weighted regression based on the number
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of anomalies in each category, we �nd γs equal to 0.726. Both results point to the belief

component and the risk component playing a non-trivial role, with either a 50/50 split or a

70/30 split between the two. This means that our single SBF ŝt+1 based on beliefs for just

two macroeconomic variables does appear to account for a notable amount of cross-sectional

variation in excess returns, but there is still an equally large amount of variation remaining

that can be attributed to risk or preferences.

V. Conclusion

Under general conditions, there is no mathematical distinction between behavioral economists

attempting to characterize subjective expectations and �nancial economists attempting to

characterize asset prices. Both problems can be framed as explaining expected outcomes

under a distorted probability distribution. While these two �elds have largely developed

separately, we argue that there is substantial potential for tools and data from each �eld to

be applied to the other.

In this paper, we utilize tools from asset pricing to characterize subjective expectations.

Just as �nancial economists are able to link many asset prices to a single SDF, we demonstrate

that subjective expectations for many variables can be linked to a single SBF St+1. We then

utilize data on subjective expectations to better understand asset prices. While there is

only limited data on subjective expectations of returns for cross-sectional anomalies, we

demonstrate that an SBF based on subjective expectations for RGDP growth and the T-bill

rate goes a substantial way towards accounting for a wide range of cross-sectional anomaly

returns.

Future work can continue to merge tools and data across these two �elds. Techniques used

to study asset prices and the SDF, such as Fama-MacBeth regressions, Hansen-Jagannathan

bounds, and a�ne term-structure models, can potentially provide important insights for

subjective expectations. Conversely, models of expectation formation, tests for biases such
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as Coibion and Gorodnichenko (2015), and additional data on subjective expectations can

potentially be translated into wide-ranging implications for asset prices by characterizing

the belief component St+1 of the SDF that prices assets, Mt+1 = St+1M̃t+1.



39

References

Adam, Klaus, and Stefan Nagel, 2023, Expectations Data in Asset Pricing , 477�506 (Aca-

demic Press).

Bachmann, Rüdiger, Giorgio Topa, and Wilbert van der Klaauw, 2023, Handbook of eco-

nomic expectations, Elsevier .

Baker, Malcolm, and Je�rey Wurgler, 2006, Investor sentiment and the cross-section of stock

returns, The Journal of Finance 61, 1645�1680.

Bianchi, Francesco, Sydney Ludvigson, and Sai Ma, 2024, What hundreds of economic news

events say about belief overreaction in the stock market, Working Paper, Johns Hopkings

University.

Bordalo, Pedro, Nicola Gennaioli, Yueran Ma, and Andrei Shleifer, 2020, Overreaction in

macroeconomic expectations, American Economic Review 110, 2748�2782.

Bordalo, Pedro, Nicola Gennaioli, Rafael La Porta, and Andrei Shleifer, 2023, Belief overre-

action and stock market puzzles, Journal of Political Economy .

Bordalo, Pedro, Nicola Gennaioli, and Andrei Shleifer, 2018, Diagnostic expectations and

credit cycles, Journal of Finance 73, 199�227.

Brav, Alon, and J B Heaton, 2002, Competing theories of �nancial anomalies, The Review

of Financial Studies 15, 575�606.

Chen, Andrew Y., and Tom Zimmermann, 2022, Open source cross-sectional asset pricing,

Critical Finance Review 27, 207�264.

Chen, Xiaohong, Lars Peter Hansen, and Peter G Hansen, 2020, Robust identi�cation of

investor beliefs, Proceedings of the National Academy of Sciences 117, 33130�33140.



40

Chen, Xiaohong, Lars Peter Hansen, and Peter G. Hansen, 2024, Robust inference for mo-

ment condition models without rational expectations, Journal of Econometrics 243.

Cieslak, Anna, 2018, Short-rate expectations and unexpected returns in treasury bonds,

Review of Financial Studies 31, 3265�3306.

Cochrane, John H, 2005, Asset Pricing , revised edition edition (Princeton University Press).

Cochrane, John H., and Lars P. Hansen, 1992, Asset pricing explorations for macroeconomics,

NBER Macroeconomics Annual 7.

Coibion, Olivier, and Yuriy Gorodnichenko, 2015, Information rigidity and the expectations

formation process: A simple framework and new facts, American Economic Review 105,

2644�2678.

Collin-Dufresne, Pierre, Michael Johannes, and Lars A. Lochstoer, 2016, Parameter learning

in general equilibrium, American Economic Review 106, 664�698.

Daniel, Kent, David Hirshleifer, and Lin Sun, 2020, Short- and long-horizon behavioral

factors.

De la O, Ricardo, Xiao Han, and Sean Myers, 2024, The cross-section of subjective expec-

tations: Understanding prices and anomalies, Working Paper, SSRN.

Engelberg, Joseph, R. David McLean, and Je�rey Ponti�, 2020, Analysts and anomalies,

Journal of Accounting and Economics 69, 101249.

Fama, Eugene F, and Kenneth R French, 2015, A �ve-factor asset pricing model, Journal of

Financial Economics 116, 1�22.

Giglio, Stefano, Matteo Maggiori, Johannes Stroebel, and Stephen Utkus, 2021, Five facts

about beliefs and portfolios, American Economic Review 111, 1481�1522.



41

Greenwood, Robin, and Andrei Shleifer, 2014, Expectations of returns and expected returns,

Review of Financial Studies 27, 714�746.

Hansen, Lars Peter, John Heaton, and Erzo G.J. Luttmer, 1995, Econometric evaluation of

asset pricing models, The Review of Financial Studies 8, 238�274.

Hansen, Lars Peter, and Ravi Jagannathan, 1991, Implications of security market data for

models of dynamic economies, Journal of Political Economy 99, 225�262.

Hansen, Lars Peter, and Scott F Richard, 1987, The role of conditioning information in

deducing testable restrictions implied by dynamic asset pricing models, Econometrica 55,

587�613.

Haubrich, Joseph, George Pennacchi, and Peter Ritchken, 2012, In�ation expectations, real

rates, and risk premia: Evidence from in�ation swaps, The Review of Financial Studies

25, 1588�1629.

Heaton, John, 1995, An empirical investigation of asset pricing with temporally dependent

preference speci�cations, Econometrica 63, 681�717.

Huang, Dashan, Fuwei Jiang, Jun Tu, and Guofu Zhou, 2015, Investor sentiment aligned: A

powerful predictor of stock returns, The Review of Financial Studies 28, 791�837.

Jensen, Theis Ingerslev, 2023, Subjective risk and return, Working Paper, Yale University.

Klein, Lawrence R, 2018, Klein's Last Quarterly Econometric Model Of The United States -

Wharton Quarterly Econometric Model: Mark 10 , volume 6 (World Scienti�c).

Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh, 2018, Interpreting factor models, The

Journal of Finance 73, 1183�1223.

Kuchler, Theresa, and Basit Zafar, 2019, Personal experiences and expectations about ag-

gregate outcomes, The Journal of Finance 74, 2491�2542.



42

Kumar, Alok, and Charles M C Lee, 2006, Retail investor sentiment and return comovements,

The Journal of Finance 61, 2451�2486.

Link, Sebastian, Andreas Peichl, Christopher Roth, and Johannes Wohlfart, 2023, Informa-

tion frictions among �rms and households, Journal of Monetary Economics 135, 99�115.

Malmendier, Ulrike, and Stefan Nagel, 2016, Learning from in�ation experiences, Quarterly

Journal of Economics 131, 53�87.

Mueller, Andreas I, Johannes Spinnewijn, and Giorgio Topa, 2021, Job seekers' perceptions

and employment prospects: Heterogeneity, duration dependence, and bias, American Eco-

nomic Review 111, 324�363.

Piazzesi, Monika, Juliana Salomao, and Martin Schneider, 2015, Trend and cycle in bond

premia, Working Paper, Stanford University.

Stambaugh, Robert F, Jianfeng Yu, and Yu Yuan, 2024, The short of it: Investor sentiment

and anomalies, Journal of Financial Economics 144, 84�112.

Stark, Tom, 2013, Spf panelists' forecasting methods: A note on the aggregate results of a

november 2009 special survey.



43

Appendix

A. Additional analytical results

A.1. Synthetic expectations and SBF based on subset of variables

Let St+1 be the SBF from Proposition 1 and Lemma 1 that matches subjective expecta-

tions for all variables, i.e., E∗
t [Xt+1] = Et [St+1Xt+1] for all variables Xt+1. We know from

Proposition 1 and Lemma 1 that St+1 exists so long as subjective expectations are coherent.

Given a vector of variables X̂t+1 and subjective expectations E
∗
t

[
X̂t+1

]
, let Ŝt+1 be such that

E∗
t

[
X̂t+1

]
= Et

[
Ŝt+1X̂t+1

]
. For clarity, we will refer to Ŝt+1 as the �estimated SBF.� For

example, the Ŝt+1 used in Sections III and IV is estimated to match subjective expectations

of real GDP growth and the T-bill rate.

Lemma 4. The di�erence between the SBF and the estimated SBF is uncorrelated with X̂t+1,

Covt

(
St+1 − Ŝt+1, X̂t+1

)
= 0.

Lemma 4 implies tells us that any variation in the SBF St+1 that is related to X̂t+1 will

be captured by Ŝt+1. Thus, the estimated SBF in Sections III and IV captures all variation

in St+1 that is related to real GDP growth and the T-bill rate.

Lemma 4 provides a useful result for synthetic expectations. Consider a variable Yt+1.

We can always express Yt+1 as

Yt+1 = aY,t +BY,tX̂t+1 + ηX̂,Y,t+1 (A1)

where Covt

(
X̂t+1, ηX̂,Y,t+1

)
= 0. We know from Lemma 4 that St+1 and Ŝt+1 have the

same conditional comovement with BY,tX̂t+1. This gives the following result for synthetic

expectations Et

[
Ŝt+1Yt+1

]
.

Lemma 5. The di�erence between the synthetic expectation and the subjective expectation

only depends on St+1 − Ŝt+1 and ηX̂,Y,t+1.

E∗
t [Yt+1] = Et

[
Ŝt+1Yt+1

]
+ Covt

(
St+1 − Ŝt+1, ηX̂,Y,t+1

)
. (A2)
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Equation (A2) tells us that two conditions must be met for the subjective expectation

to di�er from the synthetic expectation. First, there must be variation Yt+1 that is not

captured by X̂t+1. As the variation in ηX̂,Y,t+1 shrinks to zero, the synthetic expectation

converges to the subjective expectation. Second, ηX̂,Y,t+1 must be correlated with variation

in St+1 that is not captured by Ŝt+1. If the di�erence between the SBF and the estimated

SBF is uncorrelated with ηX̂,Y,t+1, then the synthetic expectation will equal the subjective

expectation.

A.2. Incorporating subjective variances and covariances

Given a multivariate Xt+1, suppose we have data on the subjective expected mean E∗
t [Xt+1]

and the subjective expected covariance matrix Σ∗
t ≡ Cov∗t (Xt+1, Xt+1). Our goal is to �nd

a variable St+1 such that

E∗
t [Xt+1] = Et [St+1Xt+1] (A3)

Σ∗
t = Et

[
St+1X

′
t+1Xt+1

]
− Et [St+1Xt+1]

′Et [St+1Xt+1] . (A4)

Note that if we are only trying to match subjective expectations about a piece of the

covariance matrix, then this task is even easier as there are fewer moments that St+1 needs

to satisfy. For example, suppose we only have data on the subjective expected mean and

the subjective expected variance V ar∗t (Xt+1) (i.e., the diagonal of Σ
∗
t ) and we want to �nd

an St+1 that matches those data. Given an objective conditional correlation matrix Ct,

we can simply create a hypothetical subjective covariance matrix DtCtDt where Dt is a

diagonal matrix whose elements are the subjective expected standard deviations. We can

then apply the methodology below to this hypothetical subjective covariance matrix, which

will guarantee that we match the data on the subjective expected variance.

Similar to Proposition 2, if the variables are objectively normally distributed, then we

have a straightforward representation for St+1.

Proposition 5. For a multivariate Xt+1 and subjective expectations E∗
t [Xt+1] and Σ∗

t , if the
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objective conditional distribution is Xt+1 ∼ N (Et [Xt+1] ,Σt), then equations (A3) and (A4)

are satis�ed for

st+1 = −1

2
β′
tΣ

∗
tβt + β′

tεt+1 +
1

2

[
log

(
det (Σt)

det (Σ∗
t )

)
+ ε′t+1

(
Σ−1

t − Σ∗−1
t

)
εt+1

]
βt = Σ∗−1

t (E∗
t [Xt+1]− Et [Xt+1])

εt+1 = Xt+1 − Et [Xt+1] .

Compared to Proposition 2, the log SBF st+1 now depends not just on the shocks εt+1 but

also on the squared shocks ε′t+1

(
Σ−1

t − Σ∗−1
t

)
εt+1 to account for higher order subjective

expectations.

A.3. Excess returns without assuming log-normality

Proposition 4 shows that we can cleanly decompose excess returns into two comovements,

one associated with beliefs and one associated with risk/preferences, if variables are log-

normally distributed. If we make no assumptions about the distributions of the variables,

then we have the following relationship.

Lemma 6. Let Re
t+1 ≡ Rt+1/R

f
t . If E

∗
t

[
M̃t+1Rt+1

]
= E∗

t

[
M̃t+1

]
Rf

t = 1, then

E
[
Re

t+1

]
= 1− Cov

(
St+1, R

e
t+1

)
− Cov

(
M̃t+1R

f
t , R

e
t+1

)
−Cov

(
[St+1 − 1]

[
M̃t+1R

f
t − 1

]
, Re

t+1

)
. (A5)

An asset's expected returns can be impacted by the agent understating certain states of

the world, which is re�ected by St+1. An asset can also be a�ected by the agent having a low

preference for payo�s in certain states of the world, which is re�ected by M̃t+1R
f
t . Note that

the inclusion of Rf
t in M̃t+1R

f
t is simply to o�set the fact that M̃t+1 includes time discounting

as well as preferences for di�erent states of the world. The combined M̃t+1R
f
t solely re�ects

preferences for di�erent states of the world.

The �rst RHS covariance in equation (A5) tells us the excess return that is explained by

distorted beliefs about the probability of di�erent states (St+1), assuming equal preferences
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for payo�s in all states of the world, i.e., M̃t+1R
f
t = 1. Similarly, the second RHS covariance

tells us the excess return that is explained by preferences for di�erent states of the world,

assuming the SBF is equal for all states of the world, i.e., St+1 = 1. The third RHS

covariance captures the interaction between beliefs and preferences. For example, is the

agent overstating/understating the probability of states of the world that she particularly

cares about (i.e., states that have a high preference)?

Combining Lemma 3 and Lemma 6 provides a method to estimate the SBF St+1 and

gauge its ability to explain excess returns without imposing any assumptions other than

subjective expectations being coherent. We can estimate the SBF from expectations data

following Lemma 3 and then measure the �rst RHS covariance in equation (A5) even if we

do not know M̃t+1. As mentioned in Section II.A, we choose to make assumptions about

the objective distribution so that we can ensure the estimated SBF is always non-negative,

as this allows us to easily relate the estimated SBF to models of expectation-formation.

However, for research where a negative estimated SBF would not be problematic, Lemmas

3 and 6 provide a useful minimum assumptions method to connect subjective expectations

to excess returns.

B. Proofs

Proof of Proposition 1: Because subjective expectations are coherent, we know that E∗
i,t [·]

is a continuous linear functional. We de�ne the inner product operator as ⟨Yt+1, Zt+1⟩ ≡

Et [Yt+1Zt+1]. By the Reisz representation theorem, there exists Si,t+1 such that E
∗
i,t [Xt+1] =

⟨Xt+1, Si,t+1⟩ = Et [Si,t+1Xt+1]. To show that Et [Si,t+1] = 1, we just use the fact that

E∗
i,t [1] = Et [Si,t+1] = 1.

Proof of Lemma 1: For each individual i, there exists Si,t+1 such that for any Xt+1,

E∗
i,t [Xt+1] = Et [Si,t+1Xt+1] .

Our goal is to show that E∗
t [Xt+1] = Et [St+1Xt+1]. Given the de�nition of E∗

t [Xt+1] and
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St+1, we have

E∗
t [Xt+1] =

1

I

∑
i

E∗
i,t [Xt+1] =

1

I

∑
i

Et [Si,t+1Xt+1]

= Et

[
1

I

∑
i

Si,t+1Xt+1

]
= Et [St+1Xt+1] .

Proof of Lemma 2: As in the last lemma, for each individual i, there exists there exists

Si,t+1 such that for any Xt+1,

E∗
i,t [Xt+1] = Et [Si,t+1Xt+1] .

Given that E∗
i,t

[
M̃t+1Xt+1

]
= Pt for all i, our goal is to show that E∗

t

[
M̃t+1Xt+1

]
=

Et

[
St+1M̃t+1Xt+1

]
= Pt. By the de�nition of M̃t+1 and St+1, we know that

Pt =
1

I

∑
i

E∗
i,t

[
M̃i,t+1Xt+1

]
=

1

I

∑
i

Et

[
Si,t+1M̃i,t+1Xt+1

]
= Et

[
1

I

∑
i

Si,t+1M̃i,t+1Xt+1

]
= Et

[(
1

I

∑
i

Si,t+1

)
M̃t+1Xt+1

]
= Et

[
St+1M̃t+1Xt+1

]
.

From Lemma 1, we know that E∗
t

[
M̃t+1Xt+1

]
= Et

[
St+1M̃t+1Xt+1

]
.

Proof of Lemma 3: Equation (4) states that

Et [St+1Xt+1] = Et [Xt+1] + Covt (St+1, Xt+1)

Then, we simply note that Covt (St+1, Xt+1) = Covt (β
′
tεt+1, εt+1) = E∗

t [Xt+1] − Et [Xt+1]

given the de�nition of βt.

Proof of Proposition 3: We start by proving Proposition 3, which is a more general

version of Proposition 2. Let ϕ (·) denote the standard normal distribution. We have that

st+1 = −1

2
β′
tβt + β′

tεt+1

= −1

2
(εt+1 − βt)

′ (εt+1 − βt) +
1

2
ε′t+1εt+1 (A6)
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which implies that

St+1 =
ϕ
(
(εt+1 − βt)

′ (εt+1 − βt)
)

ϕ
(
ε′t+1εt+1

) . (A7)

Equation (A7) shows that St+1 is equal to the ratio of two normal pdf's, one centered

at βt and the other centered at 0. Thus, when calculating expectations Et [St+1Xt+1] =∫
εt+1

ϕ
(
ε′t+1εt+1

)
St+1ft (εt+1) dεt+1, the inclusion of St+1 means that we change from using

the objective pdf ϕ
(
ε′t+1εt+1

)
to the distorted pdf centered at βt. Speci�cally,

Et [St+1Xt+1] =

∫
εt+1

ϕ
(
ε′t+1εt+1

)
St+1ft (εt+1) dεt+1

=

∫
εt+1

ϕ
(
(εt+1 − βt)

′ (εt+1 − βt)
)
ft (εt+1) dεt+1

= Et [ft (εt+1 + βt)] .

Given that βt = h−1
t (E∗

t [Xt+1]), we know that Et [ft (εt+1 + βt)] = E∗
t [Xt+1].

Proof of Proposition 2: Proposition 2 is a special case of Proposition 3. Let ηt+1 ≡

Σ−1/2εt+1 denote the standard normal shocks studied in Proposition 3. We have Xt+1 =

ft (ηt+1) = Et [Xt+1] + Σ1/2ηt+1 and ht (β) = Et [ft (β + ηt+1)] = Et [Xt+1] + Σ1/2β. This

means h−1
t (E∗

t [Xt+1]) equals Σ
−1/2 (E∗

t [Xt+1]− Et [Xt+1]). Thus, E
∗
t [Xt+1] = Et [St+1Xt+1]

for st+1 ≡ −1
2
β′
tβt + β′

tηt+1 and βt = Σ−1/2 (E∗
t [Xt+1]− Et [Xt+1]). The �nal step is noting

that this st+1 is identical to st+1 ≡ −1
2
β′
tΣβt + β′

tεt+1 with βt = Σ−1 (E∗
t [Xt+1]− Et [Xt+1]).

Proof of Proposition 4: The distributions for the three variables are

ret+1 = µr −
1

2
σ2
r + σrε

r
t+1

st+1 = µs,t −
1

2
σ2
s,t + σs,tε

s
t+1

m̃t+1 = µm,t −
1

2
σ2
m,t + σm,tε

m
t+1
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where
(
εrt+1, ε

s
t+1, ε

m
t+1

)
are potentially correlated Gaussian shocks. We have that

1 = E∗
t

[
M̃t+1Rt+1

]
= Et

[
St+1M̃t+1Rt+1

]
= Et

[
St+1M̃t+1R

e
t+1

]
Rf

t

= Et

[
St+1M̃t+1

]
Et

[
Re

t+1

]
exp

(
Covt

(
st+1 + m̃t+1, r

e
t+1

))
Rf

t

= exp
(
µr + Covt

(
st+1 + m̃t+1, r

e
t+1

))
where the second to last line uses the fact that E∗

t

[
M̃t+1R

f
t

]
= Et

[
St+1M̃t+1

]
Rf

t = 1.

Taking logs and rearranging shows that

µr = Covt
(
−st+1 − m̃t+1, r

e
t+1

)
= E

[
Covt

(
−st+1 − m̃t+1, r

e
t+1

)]
= Cov

(
−st+1 − m̃t+1, r

e
t+1

)
.

Proof of Lemma 4: Given equation (4) and the fact that Et

[
St+1X̂t+1

]
= E∗

t

[
X̂t+1

]
=

Et

[
Ŝt+1X̂t+1

]
, we know that

Covt

(
St+1, X̂t+1

)
= Covt

(
Ŝt+1, X̂t+1

)
.

Proof of Lemma 5: Given that Covt

(
St+1 − Ŝt+1, X̂t+1

)
= 0 from Lemma 4, we have

that

E∗
t [Yt+1]− Et

[
Ŝt+1Yt+1

]
= Et

[(
St+1 − Ŝt+1

)
Yt+1

]
= Et

[(
St+1 − Ŝt+1

)
ηX̂,Y,t+1

]
= Covt

(
St+1 − Ŝt+1, ηX̂,Y,t+1

)
.

Proof of Proposition 5: Again, let ϕ (·) denote the standard normal pdf. The logic of the
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proof is virtually identical to the proof of Proposition 3. We have that

st+1 = −1

2
β′
tΣ

∗
tβt + β′

tεt+1 +
1

2

[
log

(
det (Σt)

det (Σ∗
t )

)
+ ε′t+1

(
Σ−1

t − Σ∗−1
t

)
εt+1

]
= −1

2
log (det (Σ∗

t ))−
1

2
(εt+1 − Σ∗

tβt)
′ Σ∗−1

t (εt+1 − Σ∗
tβt)

+
1

2
log (det (Σt)) +

1

2
ε′t+1Σ

−1
t εt+1

which implies that

St+1 =
ϕ
(
(εt+1 − Σ∗

tβt)
′Σ∗−1

t (εt+1 − Σ∗
tβt)

)
ϕ
(
ε′t+1Σ

−1
t εt+1

) . (A8)

Equation (A8) shows that St+1 is equal to the ratio of two normal pdf's, one centered at Σ
∗
tβt

with covariance matrix Σ∗
t and the other centered at 0 with covariance matrix Σt. Thus,

when calculating expectations Et [St+1Xt+1] =
∫
εt+1

ϕ
(
ε′t+1Σ

−1
t εt+1

)
St+1ft (εt+1) dεt+1, the

inclusion of St+1 means that we change from using the objective pdf ϕ
(
ε′t+1Σ

−1
t εt+1

)
to the

distorted pdf. Speci�cally,

Et [St+1Xt+1] = Et [Xt+1] +

∫
εt+1

ϕ
(
ε′t+1Σ

−1
t εt+1

)
St+1εt+1dεt+1

= Et [Xt+1] +

∫
εt+1

ϕ
(
(εt+1 − Σ∗

tβt)
′Σ∗−1

t (εt+1 − Σ∗
tβt)

)
εt+1dεt+1

= Et [Xt+1] + Σ∗
tβt.

Given that βt = Σ∗−1
t (E∗

t [Xt+1]− Et [Xt+1]), we know that Et [St+1Xt+1] = E∗
t [Xt+1]. Sim-

ilarly we have that the inclusion of St+1 means that we change from the objective pdf to the

distorted pdf when calculating the covariance,

Et

[
St+1X

′
t+1Xt+1

]
=

∫
εt+1

ϕ
(
ε′t+1Σ

−1
t εt+1

)
St+1X

′
t+1Xt+1dεt+1

=

∫
εt+1

ϕ
(
(εt+1 − Σ∗

tβt)
′ Σ∗−1

t (εt+1 − Σ∗
tβt)

)
X ′

t+1Xt+1dεt+1

= (Et [Xt+1] + Σ∗
tβt)

′ (Et [Xt+1] + Σ∗
tβt)

+

∫
εt+1

ϕ
(
(εt+1 − Σ∗

tβt)
′ Σ∗−1

t (εt+1 − Σ∗
tβt)

)
(εt+1 − Σ∗

tβt)
′ (εt+1 − Σ∗

tβt) dεt+1

= (Et [Xt+1] + Σ∗
tβt)

′ (Et [Xt+1] + Σ∗
tβt) + Σ∗

t

= Et [St+1Xt+1]
′Et [St+1Xt+1] + Σ∗

t .
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Proof of Lemma 6: Given E∗
t

[
M̃t+1Rt+1

]
= E∗

t

[
M̃t+1

]
Rf

t = 1 and Re
t+1 ≡ Rt+1/R

f
t , we

know that

Et

[
St+1M̃t+1R

f
t

(
Re

t+1 − 1
)]

= 0

E
[
St+1M̃t+1R

f
t

(
Re

t+1 − 1
)]

= 0

E
[
Re

t+1

]
= 1− Cov

(
St+1M̃t+1R

f
t , R

e
t+1

)
.

The �nal step is simply to expand Cov
(
St+1M̃t+1R

f
t , R

e
t+1

)
into the three covariance terms

in the RHS of equation (A5).

C. Details on Data Construction

The Survey of Professional Forecasters is a quarterly survey currently administered by the

Federal Reserve Bank of Philadelphia. The survey elicits forecasts for a host of economic

variables from professional forecasters and reports individual-level forecasts. In each survey,

forecasters are asked to provide point forecasts for the current quarter and for each of the

next four quarters. Variables are sometimes added to the survey following changes in the

macroeconomy. The earliest survey dates back to 1968:Q4, which included forecasts for ngdp,

pgdp, cprof, unemp, indprod, housing, and rgdp. A round of signi�cant changes occurred in

the third quarter of 1981, when the NBER added ten more variables to the survey. The new

survey variables included since the 1981:Q3 survey are tbill, aaa, rconsum, rnresin, rresinv,

rgf, rgsl, rcbi, rexport, and cpi. In our analysis, we use all variables for which we have survey

data since 1981:Q3. Note that there is some redundancy in the variables due to the fact the

nominal GDP, real GDP, and the GDP de�ator are all forecasted variables. To ensure that

our ability to explain many economic forecasts with a single SBF is not due to redundancy in

the economic variables, we exclude both nominal GDP and the GDP de�ator and only keep

real GDP and a single in�ation measure (CPI). Table AI reports the resulting 15 variables.

The second source of survey data we use is the Blue Chip Financial Forecasts. The

survey elicits forecasts for economic variables from top analysts from manufacturers, banks,
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Table AI

List of Variables from the Survey of Professional Forecasters
This table lists the 15 Survey of Professional Forecasters variables for which one-year survey forecast data exists since 1981Q3.

Variable Name Variable Description

rgdp Real GDP
rcon Real personal consumption expenditures
cpi CPI in�ation rate

unempl Unemployment rate
indp Index of Industrial Production
tbill Three-month treasury bill rate
aaa Moody's Aaa corporate bond yield

rnresin Real nonresidential �xed investment
rresinv Real residential �xed investment
rgf Real federal government consumption and gross investment
rgsl Real state and local government consumption and gross investment

housing Level of housing starts
rcbi Real net change in private inventories

rexport Chain-weighted real net exports
cprof Level of nominal corporate pro�ts

insurance companies, and brokerage �rms. In each survey, forecasters are similarly asked

to provide point forecasts for interest rate variables and quarter-over-quarter growth rate

forecasts for economic variables. Similar to the Survey of Professional Forecasters, the Blue

Chip survey has variables added, and sometimes removed, particularly in the earlier years of

the survey. A round of signi�cant changes occurred in 1988:Q1 when a host of interest rates

were added to the survey: tbill-1yr, tbill-6m, tnote-10yr, tnote-2yr, and libor-3m. Earlier

variables available include the prime rate (prime), the fed funds rate (fedfunds), munis, aaa,

mortgage rate (mortgage), among others. In our analysis, we use all variables for which

we have survey data since 1988:Q1. We exclude from our analysis any variables which were

previously available, but subsequently removed from the survey (for instance munis forecasts

are no longer solicited as a part of the Blue Chip Survey).29 In order to illustrate that our

29We exclude 1-month commercial paper given the lack of available realized data before 1997. We exclude
the 30-year treasury rate because the survey removed this variable from 2002Q1-2006Q1 and instead asked
for forecasts of �long-term average� Treasury yields. This change not only introduces potential inconsistency
in the forecast term structure but also complicates the identi�cation of an appropriate realized counterpart
for such forecasts.
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Table AII

List of Variables from Blue Chip
This table lists all Blue Chip variables for which one-year survey forecast data exists since 1988Q1 and are not sampled in our
Survey of Professional Forecasts dataset shown in Table AI. We consider survey forecasts for these variables from 1988:Q1 to
2022:Q2.

Variable Name Variable Description

prime Prime Bank Rate
fedfunds Federal Funds Rate
mortgage Home Mortgage Rate
tbill-1yr 1 Year Treasure Bill Rate
tbill-6m 6 Months Treasury Bill Rate

tnote-10yr 10 Year Treasury Note Rate
tnote-5yr 5 Year Treasury Note Rate
tnote-2yr 2 Year Treasury Note Rate
libor-3m 3 Month Libor Rate (SOFR Rate from 2022:Q1)

SBF � which is estimated from data on the Survey of Professional Forecasters � can explain

additional subjective expectations, we exclude any variables which are also included in the

Survey of Professional Forecasters. Table AII shows the resulting 9 Blue Chip variables.

We use four-quarter ahead survey forecasts. For interest rate variables and the unem-

ployment rate, we consider the point forecasts made for quarter t+4 at time t when analysts

are �lling out the survey. For cpi, we consider the annual forecasted growth by calculating

the geometric mean of forecasted quarterly in�ation over the next four quarters. For rgdp,

rcon, indp, rnresin, rresinv, rgf, rgsl, housing, cprof, we convert point forecasts into implied

growth rates. For example, for rgdp, we compute the forecaster's point forecast for rgdpt+4

divided by the initial release of the rgdpt−1 available in quarter t. The choice of using the

�rst release of the value of rgdpt−1 in quarter t ensures we align with the information set of

forecasters as they are �lling out the survey. For net exports (rexport) and change in private

inventories (rcbi), which can potentially be zero or negative, we divide the forecasted value

by rgdpt−1 to make the variable stationary.

We use standard sources for realized values of macroeconomic and �nancial variables. For

US interest rate variables, we use data reported by the Federal Reserve Bank of St. Louis.
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For the 3-month Libor series, we source from the ICE Benchmark Administration. For each

interest rate variable, the realized value is calculated as the average value over the quarter

that is being forecasted (i.e., it is a quarterly average rather than the interest rate on the last

day of the quarter). For the remaining variables, we use real-time data maintained by the

Federal Reserve Bank of Philadelphia. Speci�cally, we use the initial release of the realized

value of the macroeconomic variable in t + 4 made available in quarter t + 5. To compute

the realized growth rate for the macroeconomic variable, we divide the t + 4 realized value

by the t− 1 value, also released in quarter t+5 for the sake of consistency. For example, we

calculate the realized growth as the BEA's estimate in 2001Q3 for 2001Q2 real GDP divided

by the BEA's estimate in 2001Q3 for 2000Q1 real GDP. This is equivalent to saying that we

use the BEA's estimate in 2001Q3 for real GDP growth from 2000Q1 to 2002Q2.
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D. The behavior of the main biases and the estimated log SBF over time

Figure A1. Biases and estimated log SBF over time. The top �gure shows the RGDP

growth and T-bill rate biases E∗
t

[
X̂t+1

]
− Et

[
X̂t+1

]
over the main sample. The bottom �gure shows the

log SBF ŝt estimated from these two biases using equation (14). Note that the sample for ŝt starts one year

after the sample for E∗
t

[
X̂t+1

]
−Et

[
X̂t+1

]
, as E∗

t

[
X̂t+1

]
−Et

[
X̂t+1

]
are combined with the future shocks

ε̂t+1 to calculate the realized value for the log SBF.

The top panel of Figure A1 shows the time series for the gap between statistical and subjec-

tive expectations for RGDP growth and the T-bill rate (E∗
t

[
X̂t+1

]
−Et

[
X̂t+1

]
). In general,

the gap between statistical and subjective expectations for RGDP growth and the T-bill

rate are weakly correlated (0.28). However, they diverge in the post-Covid period, with

forecasters being pessimistic about the recovery of output (i.e., RGDP growth) and under-

stating interest rate increases. Compared to statistical expectations, subjective expectations
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of RGDP growth and the T-bill rate are generally too high leading into recessions.

The bottom panel of the �gure shows the realized time series for the estimated log SBF

ŝt. We see that ŝt drops during most recessions, highlighting that these events are largely

unexpected. Further, we see that ŝt is highly negative during the post-Covid period. Again,

this highlights that forecasters understated the probability of a rapid economic recovery

coupled with large interest rate increases.

E. Alternative variable pairs to estimate the distortion

To estimate the log SBF ŝt+1, we choose a subset of the variables in Survey of Professional

Forecasters. Speci�cally, we include two variables in X̂t+1, RGDP growth and the T-bill rate,

because of their economic signi�cance and because they lie near the centers of the two large

clusters of variables in Figure 1. However, we could consider alternative pairs of variables.

In this section, we consider all possible pairs of variables X̂t+1. For each pair of variables,

we estimate the log SBF ŝt+1 that explains the subjective expectations for those two variables

and then evaluate how well the synthetic biases Ê∗
t [Xt+1]− Et [Xt+1] based on ŝt+1 explain

the survey biases E∗
t [Xt+1]− Et [Xt+1] for the full set of 15 variables. Table AIII shows the

10 pairs of variables that deliver the highest average R2. Out of the 210 possible pairs, we

�nd that only three pairs perform better than RGDP growth and the T-bill rate and that

the di�erences are quite small, i.e. an average R2 of 48.2% instead of 47.2%.

Similar to our main exercise, can compare the results of each pair of variables to the

regression

E∗
t [Xt+1]− Et [Xt+1] = α + Γ

(
E∗

t

[
X̃t+1

]
− Et

[
X̃t+1

])
+ ηt. (A9)

This speci�cation represents the best linear prediction one can achieve using each pair of

variables, and thus, provides an upper bound of how much one can explain given these two

variables. Column 2 shows the R2 of those linear predictions and shows that the average R2

produced by the estimated ŝt+1 is quite close to these upper bounds. Columns 3 and 4 show
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Table AIII

Synthetic expectations using an alternative pair of variables.
This table evaluates the ability of synthetic expectations to explain forecasts from the Survey of Professional Forecasters. For
each row, a set of synthetic expectations is constructed using a log SBF ŝt+1 formed from a di�erent pair of variables. The
table shows the top ten pairs of variables ranked according to the average R2 of the regression of the survey biases on the
synthetic biases Ê∗

t [Xj,t+1] − Et [Xj,t+1], shown in Column 1. For comparison, Column 2 shows the average R2 of the best
linear predictor of E∗

t [Xj,t+1]− Et [Xj,t+1] using the individual biases coming from equation (17) and Columns 3 and 4 show
the explanatory power of the �rst two principal components of the 15 biases E∗

t [Xj,t+1]−Et [Xj,t+1]. Columns 5 and 6 show
the pair of variables used for each alternative log SBF ŝt+1.

Rank E∗
t [Xt+1]− Et [Xt+1] Variables

Ê∗
t [Xt+1]− Et [Xt+1] Best Linear Predictor PC-1 PC-2

1 48.2 54.0 43.0 63.8 indp rresinv
2 48.0 50.3 43.0 63.8 rcon rcbi
3 47.5 49.6 43.0 63.8 rgdp cpi
4 47.2 52.3 43.0 63.8 rgdp tbill

5 46.5 48.6 43.0 63.8 indp rexport
6 46.2 48.8 43.0 63.8 rgdp rcbi
7 46.0 54.4 43.0 63.8 unemp rresinv
8 45.4 50.4 43.0 63.8 rnresin rresinv
9 45.2 51.7 43.0 63.8 rgdp rresinv
10 45.0 48.3 43.0 63.8 unemp rexport
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the general upper bound based on principal components analysis (PCA). For any of the ten

variable pairs, the log SBF performs better than the �rst principal component of these series

and captures roughly three fourths of the maximum possible R2, 63.8%.

F. Treatment of anomaly returns

For the three sets of anomalies (Fama and French, 2015; Daniel, Hirshleifer, and Sun, 2020;

Chen and Zimmermann, 2022) analyzed in Section IV, we obtain the monthly returns from

each of the authors' websites. Using geometric averages, we annualize the excess returns for

each anomaly and annualize the risk-free rate provided by Fama.

Given that these data represent excess level returns and our theory deals with Rt+1/R
f
t

(i.e., the exponential of excess log returns), we measure Rt+1 as the return on a strategy that

invests $1 in the risk-free bond, $1 in the long end of the anomaly and -$1 in the short end

of the anomaly. This gives Rt+1 = Rf
t +Re

anom,t+1, where R
e
anom,t+1 is the excess level return

directly taken from the authors, and ensures that our measured Re
t+1 ≡ Rt+1/R

f
t is simply

1 +Re
anom,t+1/R

f
t .

For the DHS behavioral anomalies, we only have returns data up to 2018 and therefore

evaluate the performance of our SBF over this sample (1981-2018). For the Chen-Zimmerman

anomalies, we consider all anomalies with returns over the sample of our SBF (1981-2022).

This results in 176 anomalies assigned to 32 broader anomaly categories by the authors'

original classi�cation. Given that our goal is to calculate the average log
(
E
[
Re

j,t+1

])
and

the average Cov
(
−ŝt+1, r

e
j,t+1

)
across all anomalies j in each category, we reassign anomalies

which belong to groups with three or fewer anomalies.30 For example, Cash Flow Risk and

Default Risk, which both contain one anomaly, are grouped together with the Risk category.

Table AIV shows the categories of anomalies in the original paper as well as the number of

anomalies available for our sample which fall under each category. Column 3 of Table AIV

shows the assigned category based on conceptual similarity.

30We set the threshold at 3 or fewer anomalies as 5 of the 32 categories have exactly 4 anomalies and we
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Table AIV

Chen-Zimmerman Anomalies and Categories.
This table shows the broader set of Chen and Zimmermann (2022) anomalies which are available over the same sample as our
log SBF ŝt+1, i.e., 1981 to 2022. Column 1 shows the anomaly categories in Chen and Zimmermann (2022). Column 2 shows
the number of anomaly returns assigned to those categories. Column 3 shows the reassignment of anomalies which belong to
categories with three or fewer anomaly returns. This results in a total of 176 anomalies assigned to 22 categories.

CZ2022 Category # Anomalies Assigned Category # Anomalies

Accruals 4 Accruals 4
Asset Composition 5 Asset Composition 5

Risk 6 Risk 8
Cash Flow Risk 1 =
Default Risk 1 =

Composite Accounting 4 Composite Accounting 4
Earnings Forecast 5 Earnings Forecast 9
Earnings Event 1 =
Earnings Growth 3 =
External Financing 12 External Financing 12
Investment Alt 9 Investment Alt 9
Investment 8 Investment 11

Investment Growth 3 =
Lead Lag 4 Lead Lag 4
Leverage 4 Leverage 4
Liquidity 8 Liquidity 8

Long Term Reversal 6 Long Term Reversal 6
Momentum 9 Momentum 9
Pro�tability 8 Pro�tability 9

Pro�tability Alt 1 =
R&D 5 R&D 5

Sales Growth 6 Sales Growth 6
Short Sale Constraints 5 Short Sale Constraints 5

Size 1 Size 1
Valuation 17 Valuation 17
Volatility 5 Volatility 5
Volume 4 Volume 4
Other 24 Other 31

Info Proxy 1 =
Ownership 2 =

Payout Indicator 3 =
Short Term Reversal 1 =

Total 176 Total 176
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G. Using log-normal distributions rather than normal distributions

Figure A2. Estimated SBF. This �gure compares the estimated SBF when we assume that the

Survey of Professional Forecasters variables are objectively normally distributed and when we assume they

are objectively log-normally distributed. The blue solid line shows the estimated SBF assuming normality,

which is the SBF used in the main body of the paper. The red dashed line shows the estimated SBF assuming

log-normality.

For our main results, we assume that the variables covered in the Survey of Professional

Forecasters and the Blue Chip survey are normally distributed. However, our approach

also can be fruitfully applied when variables are log-normally distributed, meaning that

future researchers have the freedom to choose whichever assumption is best-suited for their

setting. Overall, we �nd almost identical results if we assume the variables are log-normally

want to limit the number of categories that are being reassigned.
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distributed. To highlight this, Figure A2 shows the SBF estimated in this section assuming

log-normality (red) is nearly identical to the SBF estimated assuming normality from our

main analysis (blue).

Just as in the main analysis, we start by attempting to condense the Survey of Professional

Forecasters data. Of the 15 variables, most are growth rates or interest rates, meaning that

they are already well-suited for a log-normal distribution. For net exports (rexport) and

change in private inventories (rcbi), which can potentially be zero or negative, we divide the

forecasted value by rgdpt−1 and add 1 to make the variable stationary and suitable to the

log-normal assumptions. For unemployment, we consider 1 minus the unemployment rate,

which we simply refer to as empl, so that the value is closer to one and less impacted by the

log transformation.

Given the 15 log-normally distributed variablesXt+1, we calculate statistical expectations

using a VAR(1) model for xt+1 ≡ log (Xt+1),

xt+1 = a+B

(
xt log (E∗

t [Xt+1])

)
+ εt+1 (A10)

Et [Xt+1] = exp

(
Et [xt+1] +

1

2
Σ

)
(A11)

where Σ is the estimated covariance matrix of the shocks εt+1. We include the log of the

survey expectations in equation (A10) to ensure that our statistical expectations contain any

information known to the forecasters. We choose RGDP growth and the T-bill rate as the

two variables in our subset X̂t+1 ⊂ Xt+1 and estimate the log SBF that perfectly matches

the subjective expectations E∗
t

[
X̂t+1

]
,

ŝt+1 ≡ −1

2
β̂′
tΣ̂β̂t + β̂′

tε̂t+1 (A12)

where ε̂t+1 is the objective shocks to x̂t+1, Σ̂ is the covariance matrix of η̂t+1, and β̂t =

Σ̂−1
(
log
(
E∗

t

[
X̂t+1

])
− log

(
Et

[
X̂t+1

]))
following Proposition 3.

Then, we can estimate synthetic expectations based on ŝt+1 for the remaining variables
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as

Ê∗
t [Xt+1] ≡ Et

[
Ŝt+1Xt+1

]
= Et [Xt+1] exp

(
Cov (εt+1, ε̂t+1) β̂t

)
. (A13)

Just as in the main analysis, we can compare our results to more generalized estimates based

on the best linear predictor and PCA. Equation (A13) can be rewritten as

log

(
Ê∗

t [Xt+1]

Et [Xt+1]

)
= Cov (εt+1, ε̂t+1) β̂t (A14)

= Cov (εt+1, ε̂t+1) Σ̂
−1 log

E∗
t

[
X̂t+1

]
Et

[
X̂t+1

]
 . (A15)

The best linear predictor is estimated from

log

(
Ê∗

t [Xt+1]

Et [Xt+1]

)
= α + Γ log

E∗
t

[
X̂t+1

]
Et

[
X̂t+1

]
+ ηt. (A16)

The PCA results are estimated from

log

(
Ê∗

t [Xt+1]

Et [Xt+1]

)
= α + ΓΛt. (A17)

Table AV evaluates the �t of our synthetic expectations. The results are quite close

to the results in I. The synthetic log
(
Ê∗

t [Xt+1]
)
accounts for the majority of variation in

the survey log (E∗
t [Xt+1]). In terms of accounting for the gap between survey and statis-

tical expectations, the synthetic log
(

Ê∗
t [Xt+1]

Et[Xt+1]

)
accounts for roughly half of the variation in

log
(

E∗
t [Xt+1]

Et[Xt+1]

)
, is close to the upper bound implied by the best linear predictor, out-performs

the �rst principal component, and captures three fourths of the variation explained by the

�rst two principal components. Table AVI shows the correlations for each individual variable.

We can also extend our results to the Blue Chip data. Let Yt+1 represent the nine �nancial

variables in the Blue Chip data. We calculate synthetic expectations Ê∗
t [Yt+1] solely using

realized data and the Survey of Professional Forecasters survey data. First, we estimate a
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Table AV

Condensing the Survey of Professional Forecasters
This table evaluates the ability of the synthetic expectations formed from ŝt+1 to explain movements in the 15 Survey of

Professional Forecasters variables. Column 1 shows the average R2 of the regression of log (E∗
t [Xj,t+1]) on log

(
Ê∗

t [Xj,t+1]
)

across the 15 di�erent variables. Column 2 shows the average R2 of the regression of log

(
E∗

t [Xt+1]
Et[Xt+1]

)
on log

(
Ê∗

t [Xt+1]
Et[Xt+1]

)
. For

comparison, Column 3 shows the average R2 of the best linear predictor of log

(
E∗

t [Xt+1]
Et[Xt+1]

)
using the individual biases in rgdp

and tbill coming from equation (A16) and Columns 4 and 5 show the explanatory power of the �rst two principal components

of the 15 biases log

(
E∗

t [Xt+1]
Et[Xt+1]

)
.

log (E∗
t [Xt+1]) log

(
E∗

t [Xt+1]

Et[Xt+1]

)
log
(
Ê∗

t [Xt+1]
)

log
(

Ê∗
t [Xt+1]

Et[Xt+1]

)
Best Linear Predictor PC-1 PC-2

R2(%) 64.0 48.4 53.8 45.2 65.2

Table AVI

Comparing synthetic expectations and the Survey of Professional Forecasters
This table shows the correlation of each of the Survey of Professional Forecasters expectations and biases with their respective
synthetic expectations and biases formed from the log SBF ŝt+1. The �rst column shows the correlation of survey expectations
with synthetic expectations for the 15 variables. The second column shows the correlation of the survey biases with the synthetic
biases for the same 15 variables. Note that the log SBF ŝt+1 is formed only using RGDP growth and the T-Bill rate biases.

Corr
(
log (E∗

t [Xj,t+1]) , log
(
Ê∗

t [Xj,t+1]
))

Corr
(
log
(
E∗

t [Xt+1]
Et[Xt+1]

)
, log

(
Ê∗

t [Xt+1]
Et[Xt+1]

))
rgdp 1 1
rcon 0.8847 0.8724
cpi 0.6136 0.3761
empl 0.8967 0.6321
indp 0.7088 0.8523
tbill 1 1
aaa 0.9695 0.4783

rnresin 0.7182 0.8118
rresinv 0.7200 0.6682
rgf 0.8426 0.5940
rgsl 0.8168 0.4314

housing 0.5384 0.3899
rcbi 0.4823 0.7466

rexport 0.9349 0.5071
cprof 0.6204 0.6279
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VAR(1) model for yt+1 ≡ log (Yt+1),

yt+1 = ay +By

(
yt xt log (E∗

t [Xt+1])

)
+ εy,t+1 (A18)

Et [Yt+1] = exp

(
Et [yt+1] +

1

2
Σy

)
(A19)

where Σy is the estimated covariance matrix of εy,t+1. To ensure our statistical expectations

contain as much current information as possible, we include the current value xt and the

survey expectations log (E∗
t [Xt+1]) for the Survey of Professional Forecasters variables in

equation (A18).

Then, using our log SBF ŝt+1 estimated from the Survey of Professional Forecasters

RGDP growth and T-bill rate expectations, we calculate our synthetic expectations for Yt+1

as

Ê∗
t [Yt+1] ≡ Et

[
Ŝt+1Yt+1

]
= Et [Yt+1] exp

(
Cov (εy,t+1, ε̂t+1) β̂t

)
. (A20)

Importantly, we do not use any survey expectations of Yt+1 in the construction of Ê∗
t [Yt+1].

In Table AVII shows how well the synthetic expectations match the survey expectations

and shows how well the gap between synthetic expectations and statistical expectations

log
(

Ê∗
t [Yt+1]

Et[Yt+1]

)
matches the gap between survey expectations and statistical expectations

log
(

E∗
t [Yt+1]

Et[Yt+1]

)
. The results are similar to Table III.

Finally, Table AVIII tests how well our log SBF ŝt+1 based on two variables summarizes

the combined 24 forecasts from both groups. Let Zt+1 be the union of the 15 Survey of

Professional Forecasters variables Xt+1 and the 9 Blue Chip variables Yt+1. Again, the

results are quite close to Table IV. We compare our results to the upper bounds implied by

the best linear predictor and PCA. Just as in equation (16), the synthetic bias for each of our

24 variables is equal to a linear combination of the bias in log RGDP growth expectations and

log T-bill rate expectations, where the coe�cients are determined entirely by the objective
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Table AVII

Predicting Blue Chip survey expectations
This table evaluates the log SBF ŝt+1 formed from only the RDGP growth and T-Bill rate biases in generating synthetic
expectations for Blue Chip variables. The �rst column shows the correlation of the time series of the Blue Chip survey
expectations E∗

t [Yj,t+1] with the synthetic expectations Ê∗
t [Yj,t+1] constructed from ŝt+1. The second column shows the

correlation of the survey biases with the synthetic biases for the same variables.

Corr
(
log (E∗

t [Yj,t+1]) , log
(
Ê∗

t [Yj,t+1]
))

Corr
(
log
(
E∗

t [Yt+1]
Et[Yt+1]

)
, log

(
Ê∗

t [Yt+1]
Et[Yt+1]

))
prime 0.9495 0.8778
fedfunds 0.9514 0.8717
mortgage 0.9326 0.5150
tbill-1yr 0.9387 0.8683
tbill-6m 0.9403 0.8827

tnote-10yr 0.9498 0.5535
tnote-5yr 0.9473 0.7099
tnote-2yr 0.9411 0.8230
libor-3m 0.9182 0.8359

covariance of shocks. We can compare this to the best linear predictor from a regression,

log

(
E∗

t [Zt+1]

Et [Zt+1]

)
= αz + Γz log

E∗
t

[
X̂t+1

]
Et

[
X̂t+1

]
+ εz,t (A21)

and the PCA

log

(
E∗

t [Zt+1]

Et [Zt+1]

)
= αz + ΓzΛz,t. (A22)
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Table AVIII

Condensing Blue Chip and the Survey of Professional Forecasters
This table evaluates the ability of the synthetic expectations Ê∗

t [Zt+1] formed from ŝt+1 to explain the 24 Blue Chip + Survey
of Professional Forecasters variables E∗

t [Zt+1]. Column 1 shows the average R2 of the regression of the survey expectations

log (E∗
t [Zj,t+1]) on log

(
Ê∗

t [Zj,t+1]
)
across the 24 di�erent variables. Column 2 shows the average R2 of the regression of

the survey biases log

(
E∗

t [Zj,t+1]
Et[Zj,t+1]

)
on the synthetic biases log

(
Ê∗

t [Zj,t+1]
Et[Zj,t+1]

)
. For comparison, Column 3 shows the average

R2 of the best linear predictor of log

(
Ê∗

t [Zj,t+1]
Et[Zj,t+1]

)
using the individual rgdp and tbill biases coming from equation (A21) and

Columns 4 and 5 show the explanatory power of the �rst two principal components of the 24 biases log

(
Ê∗

t [Zj,t+1]
Et[Zj,t+1]

)
.

log (E∗
t [Zt+1]) log

(
E∗

t [Zt+1]

Et[Zt+1]

)
log
(
Ê∗

t [Zt+1]
)

log
(

Ê∗
t [Zt+1]

Et[Zt+1]

)
Best Linear Predictor PC-1 PC-2

R2(%) 72.1 52.7 57.5 48.8 68.3


