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Abstract

We identify desirable/undesirable inflation outcomes under subjective beliefs by comparing survey-

based and risk-adjusted distributions of inflation. Intuitively, investors dislike inflation at both

extremes, preferring a range in the middle. This “good inflation” region, which investors associate

with lower-than-average marginal utility, substantially varies over time in position and width,

revealing time-varying preferences across inflation ranges. Different inflation ranges contribute to

the inflation risk premium with varying signs, offsetting each other and often masking important

insights into the pricing of inflation risk. We rationalize empirical patterns using a model where

investors learn and update beliefs about hidden deflationary and inflationary recession states.



1 Introduction

Inflation risk has long been recognized as an important risk factor in the asset pricing lit-

erature, especially for valuing nominal securities. Unexpected changes in inflation not only

erode the real value of nominal cash flows but also introduce an additional layer of complex-

ity, the so-called inflation risk premium. This premium arises because investors expect future

inflation to be correlated with future growth and, hence, marginal utility. Depending on their

outlook, investors may perceive future inflation as a positive or negative outcome, leading to

different signs and magnitudes of the inflation risk premium. With the drastic shift to the

post-pandemic inflationary environment, understanding this premium and its implications is

now at the center of discussion.

Despite its importance, properly capturing inflation risk in an asset pricing framework is

challenging due to its dual nature. Both high inflation and excessively low inflation/deflation

are typically viewed as bad economic outcomes. Unlike other risk factors, where more ex-

posure is either unequivocally good (e.g., higher growth) or bad (e.g., higher uncertainty),

inflation risk requires a more nuanced approach. Models treating inflation risk as a monotonic

factor, either good or bad, inevitably miss the full picture. Even assuming that perceptions of

inflation risk alternate between good and bad may not be sufficient, if investors have different

preferences for various ranges of inflation outcomes at a given point in time.

To illustrate, consider a scenario where investors fear a deflationary recession, as in the

Great Depression of the 1930s, as well as an inflationary recession, like the stagflation of

the 1970s. Since investors dislike extreme future inflation outcomes and associate them with

low growth, both ends of the inflation spectrum are priced negatively. However, this also

implies that as we move toward the center of the spectrum, there should exist a moderate

range of inflation that investors prefer, seeing it as correlated with higher growth. In this

middle range, inflation risk is priced positively. This example highlights why accounting

for investors’ preferences across different inflation ranges is critical for understanding the

inflation risk premium, which reflects the sum of premiums generated over the entire range of

inflation outcomes: (i) the high inflation range is disliked by investors and generates a positive
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premium; (ii) the moderate range is favored by investors and generates a negative premium;

(iii) the deflationary range generates a negative premium, despite being disliked by investors,

because the inflation outcomes in this range themselves are negative. As such, the premiums

across different inflation ranges often offset one another. Even a small overall premium does

not necessarily indicate that inflation risk is weakly correlated with future growth or that

investors assign a low price of risk. By overlooking investors’ preferences for inflation ranges,

we lose much of the underlying dynamics behind the pricing of inflation risk.

In this paper, we extract investors’ preferences for different inflation ranges and examine

how they vary over time. To this end, we compare the distribution of future inflation under two

different probability measures: the survey-based distribution, reflecting survey respondents’

subjective beliefs, and the risk-adjusted distribution, estimated from inflation caps and floors.

We then show that the ratio between the two distributions, also known as the Radon-Nikodym

derivative, has a direct connection with the pricing kernel (equivalently, marginal utility).

Specifically, if the risk-adjusted probability is higher than the survey-based probability for a

certain inflation realization, it implies that investors perceive it as a bad economic outcome

associated with higher-than-average future marginal utility. Conversely, if the risk-adjusted

probability is lower, investors regard it as a good economic outcome associated with lower-

than-average future marginal utility.

This approach implicitly assumes that the beliefs of survey respondents are meaningful

and align closely with those of marginal investors in the inflation derivatives market. While

this is a strong assumption, it is not an uncommon one; previous studies using survey forecasts

to gauge investors’ expectations make a similar assumption. In our analysis, we focus on the

density forecasts provided by two key surveys: the Survey of Professional Forecasters (SPF)

and the Survey of Primary Dealers (SPD). The SPF, conducted by the Federal Reserve Bank

of Philadelphia, targets professional forecasters, many of whom work in the financial sector.

The SPD surveys primary dealers, mostly large banks or securities companies, authorized to

trade with the Federal Reserve Bank of New York. We exclude household surveys to ensure

that the forecasts we rely on better reflect those of market participants.

2



The density forecasts reported by the SPF and SPD represent the probabilities of the

average annualized inflation rate falling into various ranges. From the SPF, we obtain the

distribution of inflation, based on the GDP price index, for the next calendar year. The data

frequency is quarterly, and we take the time series from the fourth quarter of 2009 when our

sample period starts. From the SPD, we obtain the distribution of longer-term inflation, in

terms of the CPI, over a 5-year horizon. Since the survey is conducted right ahead of each

FOMC meeting, we have eight monthly observations per year, beginning in 2014.

These survey-based distributions of inflation can directly be compared with the risk-

adjusted ones, thanks to inflation caps and floors – essentially call and put options written

on future inflation rates. As demonstrated by Breeden and Litzenberger (1978), option prices

at various strikes allow us to extract the risk-adjusted probability density, calculated as the

second derivative of the option price with respect to the strike. In our sample period, which

begins in October 2009, inflation options are traded with various maturities over a wide range

of strike inflation rates, from -3% to 7%. This allows us to apply the nonparametric estimation

approach of Aı̈t-Sahalia and Duarte (2003) to obtain the risk-adjusted distribution of inflation

on each trading day. By averaging the estimated distributions within each quarter or month,

we generate measures that align with the timing and frequency of the SPF and SPD.

We find that the probability ratio (or the probability distortion) between the risk-adjusted

and subjected probability measures shows a clear U-shaped pattern. This confirms that

investors indeed dislike both high and low inflation environments in the future while favoring

inflation outcomes around the Fed’s 2% target. During our sample period, the probability

ratio goes through significant time series variation, leading to different good and bad inflation

regions over time. For example, in the second quarter of 2018, the good inflation region for

the next calendar year was relatively narrow and tightly centered around 2.5%. However,

in the second quarter of 2020, when deflation concerns emerged due to the pandemic, the

good inflation region expanded noticeably to the downside, and the probability distortion

tilted to the left. By the second quarter of 2022, this pattern was reversed. The good inflation

region shifted upward with greater probability distortion over higher inflation ranges, reflecting
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heightened fears of inflationary pressures. We document qualitatively similar but much less

pronounced patterns for the 5-year horizon, consistent with the view that long-term inflation

expectations remain well anchored, even in light of the disruptions in 2020 and 2022.

We emphasize that this pattern is not just driven by the level of inflation but also shaped

by the economic news inflation conveys. To demonstrate, let us revisit June 2022, when year-

on-year inflation exceeded 9%. At that time, low inflation for the following year was expected

under two different scenarios. On the one hand, a low future inflation outcome could suggest

a return to normalcy with a stable, low inflation environment. On the other hand, a sharp

decline in future inflation could indicate a hard landing marked by severe economic contraction.

Given the highly persistent nature of inflation, the latter scenario carried more weight for low

inflation ranges. As a result, the inflation ranges around 1%, and even 2% in some quarters,

were perceived to be bad.

Investors’ preferences toward inflation can be more effectively analyzed with the premiums

attached to different ranges of inflation. The inflation premium, as a whole, is defined as the

difference between the risk-adjusted and survey-based expected inflation rates. Equipped

with the conditional distributions of inflation under the two measures, we not only calculate

the inflation risk premium but also decompose it over different inflation ranges, using the

methodology proposed by Beason and Schreindorfer (2022). Our results show that the inflation

risk premium and its components fluctuate significantly over time. Comparing 2018, 2020,

and 2022 again, we argue that focusing solely on the total inflation risk premium can overlook

valuable insights, as it often masks the underlying dynamics of investors’ preferences and

expectations over different inflation ranges. By breaking down the premium, we uncover

which inflation ranges contribute disproportionately to the overall premium and how these

contributions shift over time, providing a deeper and more nuanced understanding of inflation

risk.

Finally, we show that the empirical patterns we document can be rationalized using a model

with learning. We assume that investors have imperfect information about the true state of

the economy, which switches among three regimes: (i) normal/favorable regime with relatively

4



high consumption growth and moderate inflation; (ii) deflationary recession regime marked

by low growth and very low inflation, or even deflation; and (iii) inflationary recession regime

characterized by low growth paired with a sharp increase in inflation. Since the true state is

not directly observable, investors form their subjective beliefs based on historical consumption

and inflation realizations. We show that the fear of the two recessionary regimes leads to a U-

shaped pricing kernel, projected on future inflation. In line with empirical evidence, investors’

preferences across different inflation ranges fluctuate over time, as they learn and update their

beliefs.

Literature review

Our paper is built on prior studies that exploit inflation caps and floors to gauge market-based

inflation expectations. Kitsul and Wright (2013) estimate risk-adjusted inflation densities

from inflation options and examine their responses to macroeconomic announcements through

event-study regressions. Their work is closely related to ours in that they also document a

U-shaped pattern in the pricing kernel with respect to future inflation. The key distinction is

that they construct the pricing kernel based on physical inflation densities, which are obtained

from estimating econometric models using historical data. In contrast, we build the pricing

kernel based on survey-based inflation densities, directly aiming to study investors’ inflation

preferences under subjective beliefs. In our approach, the pricing kernel is estimated without

relying on past inflation time series: both risk-adjusted and survey-based distributions are

forward-looking, allowing us to estimate the conditional pricing kernel and characterize its

time series variation without imposing any econometric model. Equipped with this conditional

information, our focus is to identify the good and bad inflation ranges perceived by investors

and explore their implications for the inflation risk premium.

In addition to Kitsul and Wright (2013), a few more studies highlight the usefulness of the

information embedded in inflation options in addressing macroeconomic questions. Flecken-

stein, Longstaff, and Lustig (2017) document that deflation risk is significantly priced with a

high market price of risk, revealing that the inflation option market places substantial weight

on deflationary scenarios. Using inflation options, Mertens and Williams (2021) tackle the
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issue of multiple equilibria in a New Keynesian model with the zero lower bound by finding

empirical support for the target equilibrium where the central bank largely succeeds in sta-

bilizing the economy. Hilscher, Raviv, and Reis (2022) develop a copula estimator for the

option-implied joint distribution of future inflation rates and study how much public nominal

debt might be inflated away. In ongoing work, Hilscher, Raviv, and Reis (2024) extract phys-

ical probabilities of inflation disasters from inflation option prices, adjusting for the effect of

inflation on inflation option payoffs, horizons, and risk premiums.

Our paper also relates to the literature on survey expectations of inflation. Various surveys

have been extensively studied in both research and policy analysis.1 These surveys have

demonstrated significant value in forecasting future inflation (Ang, Bekaert, and Wei, 2007).

While the point forecasts of expected inflation have received considerable attention so far,

relatively little focus has been placed on the density forecasts provided by some of the surveys.

A few studies utilize these distribution surveys, but their primary emphasis is rather on their

adequacy (Diebold, Tay, and Wallis, 1997) or their potential to provide extra information

about the level and uncertainty of inflation (Rich and Tracy, 2010; Kenny, Kostka, and Masera,

2014; Clements, 2018). Unlike prior work, we explore an understudied aspect of distributional

forecasts: the insights they offer into individuals’ preferences over different inflation outcomes,

particularly when combined with data from inflation derivatives.

Recently, there has been growing interest in understanding the subjective beliefs of various

economic agents, particularly with regard to the role of information rigidity in belief formation.

Mankiw and Reis (2002) propose a model where agents update their beliefs infrequently

due to the costs of acquiring information. Analyzing survey data from consumers, firms,

central bankers, and professional forecasters, Coibion and Gorodnichenko (2012) show that

the patterns of forecast errors indicate the presence of information rigidity. Follow-up work by

Coibion and Gorodnichenko (2015) further demonstrate that forecast errors can be predicted

by forecast revisions and quantify the degree of information rigidity. Intriguingly, Bordalo,

Gennaioli, Ma, and Shleifer (2020) uncover overreaction rather than underreaction when the

1These include, but are not limited to, the Livingston Survey, the Survey of Professional Forecasters, the
University of Michigan Surveys of Consumers, and the New York Fed Survey of Consumer Expectations.

6



methodology of Coibion and Gorodnichenko (2015) is applied to individual forecasts. They

reconcile this overreaction with the underreaction observed in consensus forecasts through a

diagnostic expectations model.2 In line with these empirical and theoretical findings, we allow

our model to depart from the Bayesian benchmark by incorporating information rigidity, which

we calibrate to match the empirical relation between forecast errors and forecast revisions.

Lastly, our paper contributes to the asset pricing literature on investors’ learning about in-

flation risk. David and Veronesi (2013) rationalize the time-varying comovement and volatility

of stock and Treasury bond prices based on investors’ learning about unobservable economic

regimes governing consumption, earnings, and inflation. Their model shows that inflation

news can signal either positive or negative future growth, depending on the prevailing regime,

altering the signs of stock-bond correlations. Bianchi, Lettau, and Ludvigson (2022) discuss

how monetary policy shocks can have long-lasting effects on real variables within a learning

model. In their framework, learning about the duration of monetary policy regimes, coupled

with the fading memory of past regimes, leads to persistent changes in asset valuations and

real interest rates. Andrei and Hasler (2023) examine how investors’ learning about the Fed’s

ability to manage inflation directly affects equity market dynamics; when the Fed’s credibility

wanes, investors begin to view inflation as more persistent, increasing both the risk premium

and volatility in the stock market.

The rest of the paper is organized as follows. Section 2 reviews the survey-based distribu-

tion of inflation and its use in our study. Section 3 introduces inflation options and explains

how the risk-adjusted distribution of inflation can be estimated. Section 4 analyzes what these

distributions jointly reveal about investors’ preferences for inflation ranges. Section 5 presents

an economic model with learning that can explain the data. Section 6 concludes.

2Attempts to measure the degree of information rigidity and to understand its role in belief formation
have been made across various contexts. These include, but are not limited to, studies on firm expectations
(Coibion, Gorodnichenko, and Kumar, 2018; Coibion, Gorodnichenko, and Ropele, 2020), equity market ex-
pectations (Bordalo, Gennaioli, and Shleifer, 2018; Bordalo, Gennaioli, Porta, and Shleifer, 2019; Bouchaud,
Krueger, Landier, and Thesmar, 2019), the influence of Fed communications on household beliefs (Coibion,
Gorodnichenko, and Weber, 2022), and the role of data-generating processes and forecasters’ information sets
in large-scale randomized experiments (Afrouzi, Kwon, Landier, Ma, and Thesmar, 2023).
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2 Survey-based distribution of inflation

This section provides an overview of survey-based density forecasts of price indices and explains

how we leverage them in our study.

2.1 Survey of Professional Forecasters

The Survey of Professional Forecasters (SPF) is a quarterly survey of experts affiliated with

financial and non-financial institutions, covering a wide range of macroeconomic and financial

variables. The survey began in the first quarter of 1968 and was initially conducted by the

American Statistical Association and the National Bureau of Economic Research. Since 1990,

the Federal Reserve Bank of Philadelphia has administered the survey. Each quarter, the

SPF sends survey questionnaires to participants after the release of the Bureau of Economic

Analysis (BEA)’s advance report on the national income and product accounts, ensuring

that the panelists’ information sets include the latest data. Beginning with the 2005 survey,

participants have been required to submit their projections by the second week of the middle

month of each quarter. The results are then released to the public before the BEA’s second

report on the national income and product accounts.

In our analysis, we rely on a special section of the SPF called “Mean Probability Fore-

casts,” which provides probability forecasts for various price indices averaged across different

survey respondents. One of the longest-standing forecasts in the survey is the PRPGDP

(Probability of Changes in GDP Price Index). This variable reports the average probabilities

that individual panelists assign to the annual-average over annual-average percent change in

the chain-weighted GDP price index falling into various ranges. The term “annual-average

over annual-average change” refers to the percent change in the average level of GDP prices

from one year to the next, with the annual average being calculated as the mean of the quar-

terly levels across all four quarters of a calendar year. The underlying index for PRPGDP has

changed over time. Before the adoption of the chain-weighted GDP price index, from 1992 to

1995, the survey asked respondents about changes in the implicit deflator for GDP with fixed

weights. Prior to 1992, the implicit deflator for GNP with fixed weights was used.
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The probability ranges for PRPGDP have undergone several modifications since the sur-

vey’s inception. Focusing on the subsample relevant to our study, which begins in the last

quarter of 2009, there was only one change.3 From 1992 to 2013, respondents assigned prob-

abilities to ten buckets of outcomes: below 0%, from 0% to 8% in 1% increments, and above

8%. Starting in the first quarter of 2014, the upper limit was reduced to 4%, but the buckets

were refined to narrower intervals: below 0%, from 0% to 4% in 0.5% increments, and above

4%. All inflation buckets are right-open intervals. It is important to note that the probabil-

ity estimates pertain to “fixed-event forecasts.” In each quarterly survey of a given calendar

year, respondents provide their probability estimates for changes in the current calendar year

(i.e., the year in which the survey is conducted) and the following calendar year. This means

that the forecast horizon varies across different quarters of the year. For example, the survey

conducted in the fourth quarter of each calendar year includes a nowcast for the current year

and a forecast for the next year. In our analysis, we focus on the survey responses for the

subsequent calendar year to ensure that the reported probabilities represent valid forecasts.

Panel A: PRPGDP with narrower buckets (2014Q1 - 2024Q2)

p�8, 0q r0, 0.5q r0.5, 1q r1, 1.5q r1.5, 2q r2, 2.5q r2.5, 3q r3, 3.5q r3.5, 4q r4,8q

Mean 0.21 0.84 3.34 11.06 26.74 29.19 14.66 6.59 4.05 3.33
SD 0.30 1.19 3.39 8.04 13.22 10.45 8.04 7.84 8.08 8.42
5th 0.00 0.00 0.00 0.17 2.74 6.45 4.48 0.16 0.00 0.00
50th 0.09 0.44 2.73 9.79 29.45 30.24 13.74 2.75 0.40 0.10
95th 0.72 2.37 9.75 25.26 43.21 42.56 28.23 21.51 25.07 23.17

Panel B: PRPGDP with wider buckets (2009Q4 - 2024Q2)

p�8, 0q r0, 1q r1, 2q r2, 3q r3, 4q r4,8q

Mean 0.67 6.37 39.48 40.78 9.83 2.88
SD 0.95 5.89 17.39 14.06 12.96 7.13
5th 0.00 0.00 4.69 22.19 0.28 0.00
50th 0.17 5.01 42.39 38.85 5.06 0.35
95th 2.53 18.82 63.06 63.68 43.49 19.60

Table 1: Descriptive statistics for PRPGDP. This table presents the mean, standard deviation, and
the 5th, 50th, and 95th percentiles of PRPGDP (Probability of Changes in GDP Price Index) forecasts from
the Survey of Professional Forecasters. We focus on the survey responses for the next calendar year. Panel A
covers 2014Q1 to 2024Q2 with narrower probability buckets: p�8, 0q, r0, 0.5q, r0.5, 1q, r1, 1.5q, r1.5, 2q, r2, 2.5q,
r2.5, 3q, r3, 3.5q, r3.5, 4q, and r4,8q. Panel B provides the same statistics for 2009Q4 to 2024Q2 with wider
buckets: p�8, 0q, r0, 1q, r1, 2q, r2, 3q, r3, 4q, and r4,8q. All values are in percentages.

3Our sample period of interest begins in October 2009 due to the availability of inflation option data.
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Table 1 presents the time series mean, standard deviation, and the 5th, 50th, and 95th

percentiles of the PRPGDP forecasts. Panel A shows the descriptive statistics for the period

beginning in 2014, during which the survey used narrower buckets with finer intervals. During

this period, inflation was predominantly expected to hover around the Fed’s 2% target, with

the average probabilities concentrated in the r1.5%, 2%q and r2%, 2.5%q buckets. The tail

portions of the distribution show much smaller probabilities. The average probability of the

lowest bucket (below 0%) is 0.21%, reflecting the consensus that deflation was considered

an unlikely outcome. Similarly, the highest bucket (above 4%) retains a modest average

probability of 3.33%. However, the standard deviations of these bucket probabilities are quite

sizable relative to their means. Related, we observe substantial differences between the 5th

and 95th percentiles, particularly in the high inflation regions. Notably, the probability of

over 4% inflation is 23.17% at the 95th percentile, indicating that forecasters did occasionally

assign significant probabilities to these extreme outcomes.

Panel B extends the data to cover the entire sample period of our interest, from the last

quarter of 2009 to the second quarter of 2024. The descriptive statistics shown in this panel are

based on the wider buckets that were in use before 2014. To achieve this, we aggregate the finer

intervals from 2014 onward into broader 1% increments that correspond to the earlier survey

structure. For instance, the probabilities for the r1%, 2%q bucket in Panel B were computed

by summing the probabilities assigned to the r1%, 1.5%q and r1.5%, 2%q intervals in the case

of the post-2014 data. The results remain similar in the extended sample. Forecasters largely

anticipated that inflation would fall within the r1%, 3%q range, assigning it a total probability

of more than 80% on average. Compared to Panel A, we notice that the distribution in

Panel B is slightly shifted to the left, putting higher probabilities on lower inflation outcomes.

This is because the full sample period in Panel B includes the low-inflation period following

the global financial crisis, unlike the one in Panel A.

Figure 1 visualizes the variation in the forecasts for PRPGDP over time, with each color

representing one of the six probability buckets in Panel B of Table 1. The figure highlights

significant shifts in inflation expectations across different periods. We first notice a non-
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Figure 1: Time series of PRPGDP. This figure illustrates the time series of PRPGDP (Probability of
Changes in GDP Price Index) forecasts from the Survey of Professional Forecasters, with each color repre-
senting one of the six probability ranges: p�8, 0q, r0, 1q, r1, 2q, r2, 3q, r3, 4q, and r4,8q. The sample period is
from 2009Q4 to 2024Q2. All values are in percentages.

negligible probability of deflation following the financial crisis around 2008-2009 and again

during the COVID-19 crisis in 2020. During these periods, the probabilities of the GDP

price index falling into lower buckets (below 0% or 1%) were significantly elevated, reflecting

concerns about deflationary recessions. In contrast, the inflationary environment emerged

from mid-2021 to 2023, with a substantial increase in the probabilities for higher inflation

ranges. Accordingly, forecasters assigned a greater likelihood to inflation rates in the r2%, 3%q,
r3%, 4%q, and r4%,8q buckets, signaling much higher expected inflation. Overall, the figure

encapsulates the significant time series variation in inflation expectations, in response to major

economic events/conditions.
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Figure 2: PRPGDP densities. This figure presents the survey results for PRPGDP (Probability of Changes
in GDP Price Index) forecasts from the Survey of Professional Forecasters for three different quarters: the
second quarter of 2018 (Panel A), 2020 (Panel B), and 2022 (Panel C). The x-axis represents the average
annual inflation rate buckets: p�8, 0q, r0, 0.5q, r0.5, 1q, r1, 1.5q, r1.5, 2q, r2, 2.5q, r2.5, 3q, r3, 3.5q, r3.5, 4q, and
r4,8q. All values are in percentages.
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To highlight the distinct patterns in inflation expectations over time, Figure 2 juxta-

poses the distributions of PRPGDP for three different quarters: the second quarters of 2018

(Panel A), 2020 (Panel B), and 2022 (Panel C). Inflation expectations were centered around

the r2%, 2.5%q bucket in 2008, close to the Fed’s target. However, the distribution became

more dispersed and substantially shifted to the left two years later, due to fears of deflationary

contractions at the peak of the COVID-19 crisis. The pattern saw a dramatic shift to the right

in 2022, with significant probabilities in the r3%, 4%q and above 4% ranges, as forecasters were

expecting much higher inflation coming their way.

While our main variable is PRPGDP, the SPF also reports panelists’ average probabilities

for other price indices. For instance, the PRCCPI (Probability of Core CPI Inflation) and

the PRCPCE (Probability of Core PCE Inflation) represent the probabilities of fourth-quarter

over fourth-quarter changes in the core CPI and the core PCE falling into the same ten post-

2014 buckets as PRPGDP. The fourth-quarter level of each index is defined as the average

of the monthly levels over the three months of the fourth quarter. We provide descriptive

statistics for PRCCPI and PRCPCE in the Internet Appendix. The distributional forecasts

for these indices show patterns similar to those of PRPGDP in general. Yet, they exhibit

lower time series volatility, resulting in tighter distributions. This is expected, as these price

measures exclude food and energy prices, which tend to be more volatile over time.

2.2 Survey of Primary Dealers

Beginning in 2011, the New York Fed’s Open Market Trading Desk has conducted the Survey

of Primary Dealers (SPD) ahead of each FOMC meeting. This survey targets primary dealers

to gather their expectations on key variables such as the federal funds rate, the future size of

the Federal Reserve’s balance sheet, and inflation. The survey results are among the inputs

used by Federal Reserve staff to evaluate market expectations regarding the economic out-

look, monetary policy, and financial markets. Survey questions are published on the Federal

Reserve Bank of New York’s website approximately two weeks before each FOMC meeting,

coinciding with their distribution to SPD respondents. Summaries of the survey results are re-

12



leased around three weeks after each FOMC meeting, following the publication of the meeting

minutes.

p�8, 1q p1, 1.5s p1.5, 2s p2, 2.5s p2.5, 3s p3,8q

Mean 3.64 9.85 24.80 33.45 18.20 10.25
SD 1.06 3.74 7.93 5.36 6.88 9.10
5th 2.25 4.25 12.00 23.00 11.25 3.00
50th 3.00 11.00 29.00 35.00 14.00 5.00
95th 6.00 15.75 33.75 40.00 29.75 29.75

Table 2: Descriptive statistics for SPD inflation density forecasts. This table presents the mean,
standard deviation, and the 5th, 50th, and 95th percentiles of the Survey of Primary Dealers inflation density
forecasts. The survey is conducted ahead of eight regularly scheduled FOMC meetings every year and provides
the likelihood that the average annualized CPI inflation rate over the next five years will fall into various ranges:
p�8, 1s, r1, 1.5q, r1.5, 2q, r2, 2.5q, r2.5, 3q, and r3,8q. The sample period is from December 2014 to June 2024.
All values are in percentages.

To gain a deeper understanding of longer-term inflation expectations, we focus on a specific

survey question that asks respondents to assign probabilities to the likelihood that the average

annualized CPI inflation rate over the next five years will fall into various ranges. Since its

introduction in December 2014, this question has been consistently included in the survey,

with the exception of April 2020. Initially, respondents assigned probabilities to six ranges:

below 1%, from 1% to 3% in 0.5% increments, and above 3%. Since June 2022, two additional

0.5% ranges have been added at both ends of the spectrum. Unlike PRPGDP, the inflation

buckets for the SPD are left-open intervals.

Table 2 presents the descriptive statistics across the six ranges included in the survey since

December 2014. Respondents consistently expected the 5-year average inflation to remain

very close to the Fed’s 2% target, with the total average probability of 58% for the p1.5%, 2%s
and p2%, 2.5%s ranges. Compared to the 1-year horizon forecasts reported in Panel A of

Table 1, the standard deviations of these central buckets are lower, consistent with the notion

that long-term inflation expectations are anchored.

Figure 3 depicts the changes in the SPD inflation density forecasts over time, with each

color corresponding to one of the six probability ranges shown in Table 2. To facilitate

comparison with Figure 1, the original time series is converted to a quarterly frequency.

Note that there are typically eight pre-scheduled FOMC meetings per year, two per quarter,
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Figure 3: Time series of SPD inflation density forecasts. This figure illustrates the time series of
the 5-year density forecasts for the Survey of Primary Dealers, with each color representing one of the six
probability ranges: p�8, 1s, r1, 1.5q, r1.5, 2q, r2, 2.5q, r2.5, 3q, and r3,8q. The sample period is from December
2014 to June 2024. All values are in percentages.

unless shifts in meeting dates occur. Each bar represents the average survey results within

the quarter. The probability of being in the p1.5%, 2%s range or below has steadily decreased

since the COVID-19 pandemic, while the probability of being in the p2.5%, 3%s range or above
has steadily increased. This trend is also evident in Figure 4, which presents survey responses

collected before the fourth FOMC meeting in June of 2018 (Panel A), 2020 (Panel B), and

2022 (Panel C). From 2018 to 2020, inflation expectations transitioned from a stable outlook

centered around 2% to a more dispersed distribution with a downward shift. By 2022, the

outlook was reversed, with a substantial shift to the right: the largest probability mass was

allocated to over 3% average inflation, as inflation continued to rise.
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Figure 4: SPD inflation densities. This figure presents the distribution of 5-year inflation expectations
from the Survey of Primary Dealers collected before the fourth FOMC meeting for three different years: June
2018 (Panel A), June 2020 (Panel B), and June 2022 (Panel C). The x-axis represents the average annual
inflation rate buckets: p�8, 1s, r1, 1.5q, r1.5, 2q, r2, 2.5q, r2.5, 3q, and r3,8q. All values are in percentages.
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Still, what stands out in Figure 3 is that the probability for the p2%, 2.5%s bucket has

remained similar since 2020, even during the high inflation episode in 2022; the lengths of the

purple bars show relatively small variation in the figure. Overall, the bucket probabilities are

much more stable over time compared to Figure 1, suggesting that survey respondents expect

inflation to level out in the long run.

3 Risk-adjusted distribution of inflation

As discussed in the previous section, the survey-based distributions reflect survey respondents’

beliefs about the future evolution of inflation. In this sense, such distributions can be viewed

as the ones under the respondents’ subjective probability measure. This section now examines

the distribution of inflation under a risk-adjusted probability measure, which can be estimated

nonparametrically from the prices of inflation options.

3.1 Inflation caps and floors

Inflation caps and floors are financial derivatives that are used to hedge or speculate on

inflation. These instruments are essentially options written on future inflation rates. The

most commonly traded are zero-coupon and year-on-year contracts. While both types of

contracts critically depend on future realized inflation, they differ in their payoff structure

and the way they are exercised.

As the name suggests, a zero-coupon inflation option is a single-payment instrument that

can be exercised only once at the contract’s maturity. A zero-coupon inflation cap (floor),

with a strike rate of k maturing in T years, is a call (put) option whose payoff depends on the

difference between realized cumulative inflation over the option’s lifetime and the annually

compounded strike price p1� kqT . Formally, the cap and floor payoffs can be expressed as:

cpayZC

t�T �
�
ΠtÑt�T � p1� kqT

��
and fpayZC

t�T �
�
p1� kqT � ΠtÑt�T

��
, (1)

where ΠtÑt�T � pCPIt�T {CPItq represents the gross inflation rate between time t and time
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t � T . Here, CPIt�T and CPIt represent the price levels, in terms of CPI, at inception and

maturity, respectively. In simpler terms, if the average annualized inflation rate over the

next T years, given by T
?
ΠtÑt�T � 1, exceeds the strike inflation rate k, the cap is exercised.

Conversely, if the average annualized inflation rate is below the strike rate k, the floor is

exercised.

On the other hand, a year-on-year inflation option, with the same strike and maturity,

consists of T yearly caplets (floorlets), each of which matures consecutively every year. Each

caplet/floorlet j P t1, 2, � � � , T u can be seen as a 1-year zero-coupon inflation option starting

at time t � j � 1 and expiring at t � j. Hence, at the end of each year t � j, the contract

pays the difference between year-on-year gross inflation realized over the year Πt�j�1Ñt�j �
pCPIt�j{CPIt�j�1) and the strike value p1 � kq, if exercised. This leads to the following T

yearly payoffs, where for each j � 1, 2, � � � , T ,

cpayYoY

t�j �
�
Πt�j�1Ñt�j � p1� kq

��
and fpayYoY

t�j �
�
p1� kq � Πt�j�1Ñt�j

��
. (2)

For a 1-year maturity (T � 1), there is only one period and one payoff to consider. Thus,

year-on-year options are identical to zero-coupon options for this maturity, and the two terms

can be used interchangeably.

Comparing equations (1) and (2) makes clear the difference between zero-coupon and

year-on-year inflation options. Let πt�j � log Πt�j�1Ñt�j denote the log inflation rate. In

the case of a zero-coupon contract, the exercise decision is based on cumulative inflation

ΠtÑt�T � exp
�°T

j�1 πt�j

	
. In the case of a year-on-year contract, however, the exercise

decision is made for each Πt�j�1Ñt�j � exp pπt�jq separately every year t� j. Put differently,

the former contract can be seen as an option on a portfolio of future log inflation rates (i.e.,°T
j�1 πt�j), whereas the latter contract can be seen as a portfolio of options on future log

inflation rates (πt�j individually).
4

4Exploiting this relation, Hilscher, Raviv, and Reis (2022) estimate the joint distribution of πt�j by intro-
ducing a copula function.
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3.2 Option-implied density

The seminal work by Breeden and Litzenberger (1978) demonstrates that by analyzing Euro-

pean options with different strike prices, one can infer the risk-neutral distribution of future

asset prices. Specifically, the risk-neutral probability density is derived as the second deriva-

tive of the option price with respect to the strike price. Applying a similar method, we can

extract the distribution of inflation implied by caps and floors.

First, consider a zero-coupon inflation cap with strike rate k and time to maturity T .5 For

notational convenience, let K � p1� kqT denote the strike value. The pricing relation implies

that the cap price CZC(T )

t can be expressed as

CZC(T )

t � D(T )

t EQt�T

t

�
cpayZC

t�T

�
� D(T )

t

» 8

K

px�Kq q̃t,tÑt�T pxqdx, (3)

whereD(T )

t denotes the time-t price of a T -year risk-free nominal zero-coupon bond and q̃t,tÑt�T

represents the time-t probability density of ΠtÑt�T . Unlike Breeden and Litzenberger (1978),

the pricing measure we choose is not the risk-neutral measureQ�, which takes the bank account

as the numéraire: CZC(T )

t � EQ�
t

�
e�

³t�T
t rsds � cpayZC

t�T

�
. As shown in equation (3), Qt�T is the

forward measure where the price of a zero-coupon bond maturing at time t� T is used as the

numéraire (see also Kitsul and Wright, 2013). The distinction between the two martingale

measures carries different importance depending on the context. For instance, when future

interest rates trs|t ¤ s ¤ t� T u are constant or deterministic, e�
³t�T
t rsds simply collapses to

the zero-coupon bond price D(T )

t and can be pulled out of the expectation. More generally,

these measures become identical if future interest rates and the underlying asset determining

the option payoff are independent. This is why, for practical purposes, the distinction between

the two is often overlooked for short-maturity equity options. In our context, however, it is

difficult to assume such independence, as future interest rates and the option payoff are both

5While we illustrate the method using a cap (i.e., call), the second derivative of a floor (i.e., put) leads to
the same mathematical expression. In our empirical implementation in Section 3.3, we follow the literature
and work with cap prices. We still make use of floor prices by converting them into equivalent cap prices based
on put-call parity.
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affected by the future inflation path over a long horizon.6

The integral expression in equation (3) reveals that the zero-coupon cap price can be seen

as a function of the strike price: CZC(T )

t � CZC(T )

t pKq. By the second fundamental theorem of

calculus, twice differentiating the equation with respect to K leads to the following relation:

B2CZC(T )

t pKq
BK2

� D(T )

t q̃t,tÑt�T pKq,

which implies that the risk-adjusted probability density of the cumulative inflation rate ΠtÑt�T

can be obtained as the second derivative of the option price, scaled by the zero-coupon bond

price. Note that the surveys discussed in Section 2 provide the distribution of future inflation

in terms of the average annualized inflation rate T
?
ΠtÑt�T � 1, not the cumulative one. For

a direct comparison, we define qt,tÑt�T to be the density of the average annualized inflation

rate and derive it from qt,ΠtÑt�T
as follows:

qt,tÑt�T pxq � q̃t,tÑt�T

�
p1� xqT

	
� T p1� xqT�1,

where the term T p1 � xqT�1 comes from the Jacobian determinant of the mapping from

T
?
ΠtÑt�T � 1 to ΠtÑt�T .

While we obtain qt,tÑt�T from zero-coupon contracts, year-on-year contracts allow us to

extract qt,t�j�1Ñt�j, the density of inflation over a yearly period starting j�1 years and ending

j years from today. Recall that each caplet constituting the year-on-year cap can be seen as

a forward-starting 1-year zero-coupon cap. The price of caplet j, say Cj,t, should equal the

price difference between the two year-on-year caps with adjacent maturities, one with j years

and the other with j � 1 years:

Cj,t � CYoY(j)

t � CYoY(j � 1)

t ,

because buying the former and selling the latter exactly replicates the caplet. By applying

6For a similar reason, the forward measure is frequently employed as a risk-adjusted probability measure
for interest rate derivatives. See, for example, Li and Zhao (2009).
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the same method to the caplet price, we can show that

B2Cj,tpKq
BK2

� D(j)

t q̃t,t�j�1Ñt�jpKq,

where q̃t,t�j�1Ñt�j is the risk-adjusted probability density of future 1-year gross inflation

Πt�j�1Ñt�j. The density of net inflation Πt�j�1Ñt�j � 1 is then given by qt,t�j�1Ñt�jpxq �
q̃t,t�j�1Ñt�jp1� xq.

3.3 Estimation

We download the historical prices of zero-coupon and year-on-year inflation options from

Bloomberg. The pricing data, collected at the daily frequency, span approximately 15 years

from October 5, 2009 to August 30, 2024. Bloomberg offers various data sources/contributors.

For the majority of our sample period (nearly 12 years starting in January 2013), we rely on

“BVOL,” which provides option prices derived from smooth, arbitrage-free volatility surfaces

constructed by Bloomberg. For the period prior to 2013 – when BVOL data are unavailable

– we use the “CMP,” Bloomberg’s composite prices aggregated from multiple sources. There

are three versions of CMP, corresponding to different time zones: CMPN (New York), CMPL

(London), and CMPT (Tokyo). We use CMPN, although the prices are very similar across

the three.7 All prices are quoted in cents per $100 of notional value.

Inflation options are typically traded for a wide range of fixed maturities ranging from 1

to 30 years. Among them, we select contracts with the following three maturities: (i) 1-year

zero-coupon options, (ii) forward-starting 1-year options maturing in two years (i.e., 2-year

caplets/floorlets), and (iii) 5-year zero-coupon options. As described below, these contracts

are chosen so as to construct the risk-adjusted distributions that are directly comparable to

the survey-based distributions introduced in Section 2.

The strike rates observed in the data range from -3% to 7%, with a central value of 2%. At

7Unlike BVOL prices, Bloomberg composite prices occasionally become stale and remain unchanged for
extended periods. To exclude these stale prices from our analysis, we drop observations if the price has not
been updated over the past five trading days.
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the lower and higher ends, the strike rates are spaced in 1% increments, specifically from -3%

to -1% and from 5% to 7%. The middle range, between -1% and 5%, uses finer increments of

0.5%. Not surprisingly, not all of these strikes are actively traded. Options with the two most

extreme strikes (-3% and 7%) are rarely observed, and their prices are virtually nonexistent.

Additionally, prices for extremely deep-in-the-money options are generally unavailable for

both caps and floors. Consequently, caps are typically observed with higher strike rates and

floors with lower strike rates. For instance, BVOL consistently provides prices for 10 floors

with strikes ranging from -2% to 3% and 10 caps with strikes ranging from 1% to 6%. The

number of options available per day is similar but slightly higher for CMPN, with an average

of around 26 (median of about 23) until 2013. CMPN also shows better data availability for

out-of-the-money and near-the-money options than in-the-money options. Based on put-call

parity, we convert floor prices into equivalent cap prices so we acquire the prices of caps for

all available strikes, not just in the out-of-the-money or near-the-money region, but also in

the in-the-money region.

Equipped with a rich cross-section across the strike dimension, we estimate the implied

density of inflation using the methodology developed by Aı̈t-Sahalia and Duarte (2003). This

process involves two main steps. First, we apply the algorithm of Dykstra (1983) to the

observed prices, filtering out arbitrage-free prices that satisfy the shape restrictions related to

the slope and convexity of the option price curve. This filtering ensures, in particular, that

butterfly spread strategies, whose payoffs mimic state prices, do not yield negative values.

Second, we estimate the second derivative of the option price with respect to the strike price

using locally polynomial kernel smoothing. Specifically, we employ the locally linear estimator

(order of 1), which, according to Aı̈t-Sahalia and Duarte (2003), produces a better fit than

the traditional Nadaraya-Watson kernel estimator (order of 0).

To illustrate, Figure 5 presents the estimation results for three dates: June 13, 2018

(Panel A), June 10, 2020 (Panel B), and June 15, 2022 (Panel C), all of which were the 4th

scheduled FOMC announcement days that year. For each date, we extract the risk-adjusted

distribution of 1-year inflation qt,tÑt�1 from CZC(1)

t (blue dashed line, left graph) and that of 1-

20



(A) June 13, 2018

-10 -5 0 5 10 15

0

10

20

30

40

-10 -5 0 5 10 15

0

10

20

30

40

(B) June 10, 2020

-10 -5 0 5 10 15

0

10

20

30

40

-10 -5 0 5 10 15

0

10

20

30

40

(C) June 15, 2022

-10 -5 0 5 10 15

0

10

20

30

40

-10 -5 0 5 10 15

0

10

20

30

40

Figure 5: Risk-adjusted densities. This figure presents the risk-adjusted distributions of inflation for
three dates: June 13, 2018 (Panel A), June 10, 2020 (Panel B), and June 15, 2022 (Panel C), all corresponding
to the 4th scheduled FOMC announcement days of those years. For each date, the left graph shows the 1-
year inflation distribution qt,tÑt�1 (blue dashed line), the 1-year forward-starting 1-year inflation distribution
qt,t�1Ñt�2 (yellow dotted line), and the inflation distribution over the next calendar year qncyt (black solid
line). The right graph shows the 5-year average inflation distribution qt,tÑt�5 (black solid line).

year forward-starting 1-year inflation qt,t�1Ñt�2 from C2,t � CYoY(2)

t �CYoY(1)

t (yellow dotted line,

left graph). To directly compare with the survey-based distribution from the SPF, we need

the risk-adjusted distribution of inflation over the next calendar year, denoted by qncyt (black

solid line, left graph). Intuitively, qncyt should lie somewhere between qt,tÑt�1 and qt,t�1Ñt�2,

considering that

qncyt �
$&
% qt,t�1Ñt�2 if t is the beginning of the current calendar year,

qt,tÑt�1 if t is the end of the current calendar year.
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For an arbitrary t, we approximate qncyt by the weighted average of qt,tÑt�1 and qt,t�1Ñt�2,

with weights depending on the number of days included in each yearly period. Lastly, we

calculate the risk-adjusted distribution of 5-year average inflation qt,tÑt�5 (black solid line,

right graph), which serves as the counterpart to the survey-based distribution from the SPD.

The figure shows drastically different patterns across the different dates, reflecting the

evolving economic landscape and inflation expectations over time. In June 2018 (Panel A),

the 1-year inflation distribution qt,tÑt�1 and the forward-starting 1-year inflation distribution

qt,t�1Ñt�2, both of which are under the risk-adjusted measure, are closely aligned. This in-

dicates a stable short-term outlook for inflation as perceived by investors. Naturally, the

risk-adjusted distribution of inflation over the next calendar year qncyt is also positioned very

close to these two distributions. Notably, both the 1-year inflation distributions and the 5-year

average inflation distribution qt,tÑt�5 remain symmetric with little skew.

As we move to June 2020 (Panel B), the inflation distributions shift substantially to the

left, reflecting deflationary expectations in the wake of the COVID-19 pandemic. As investors

grappled with an unpredictable economic environment, the divergence between qt,tÑt�1 and

qt,t�1Ñt�2 becomes pronounced. Reflecting heightened uncertainty and fears of deflation during

this period, qncyt also displays a wider spread and a larger probability mass in the deflationary

region below 0%, relative to June 2018. Despite this, the 5-year average inflation distribution

qt,tÑt�5 remains fairly symmetric, albeit slightly shifting to the left, suggesting that long-term

inflation expectations were still anchored with confidence in the eventual normalization of

inflation.

However, we observe the completely opposite pattern in June 2022 (Panel C). The infla-

tion distributions have shifted to the right, reflecting the steady rise in inflation as economic

conditions changed dramatically post-2020; the year-on-year inflation rate peaked in June

2022 at about 9%. The 1-year inflation distribution qt,tÑt�1 is now located further to the

right than the forward-starting 1-year inflation distribution qt,t�1Ñt�2, as short-term inflation

expectations surged alongside realized inflation. Similar to June 2020, qncyt has a large spread

but now assigns the majority of its probability mass to regions with high inflation. While
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investors’ expectations about short-term inflation had significantly increased, the 5-year av-

erage inflation distribution qt,tÑt�5 shows a moderate shift and remains relatively symmetric.

This is consistent with the belief that, despite the immediate inflationary pressures, long-term

inflation expectations remain anchored and that inflation would eventually stabilize over a

longer horizon.

4 Preferences for different inflation ranges

In this section, we combine the survey-based probability distribution from Section 2 and

the risk-adjusted probability distribution from Section 3 to explore what they reveal about

investors’ preferences for different ranges of inflation. To this end, we assume that marginal

investors in the inflation option market hold beliefs similar to those of the survey respondents.

While this is a strong assumption, it is not unreasonable. The SPF respondents are composed

of professional economists, analysts, and forecasters, many of whom work at major banks

and investment firms. The SPD also targets primary dealers, mostly large banks and their

affiliates. Previous studies that treat survey forecasts as physical expectations and use them

in model estimation implicitly make a similar assumption (see, e.g., Haubrich, Pennacchi, and

Ritchken, 2012).

Building on this premise, we can establish a direct connection between the two measures

P and Qt�T through investors’ marginal utility. Since Qt�T uses a zero-coupon bond D(T )

t �
Et
�
M$

tÑt�T � 1
�
as the numéraire, the Radon-Nikodym derivative of Qt�T with respect to P

is expressed by

dQt�T

dP

����
Ft

� M$
tÑt�T

D(T )

t

� M$
tÑt�T

Et
�
M$

tÑt�T

� , (4)

where M$
tÑt�T denotes the (nominal) pricing kernel, or equivalently, marginal utility. The key

intuition from equation (4) is that Qt�T is obtained by re-weighting P based on future marginal

utility values. Let ω represent an arbitrary event realized at time t� T , i.e., ω P Ft�T . If the

event constitutes a “good” economic state, in terms of lower-than-expected marginal utility
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(M$
tÑt�T pωq   Et

�
M$

tÑt�T

�
), the Radon-Nikodym derivative in equation (4) assigns a lower

probability to this event under Qt�T than P. In contrast, if this event is perceived as a “bad”

economic state with higher-than-expected marginal utility (M$
tÑt�T pωq ¡ Et

�
M$

tÑt�T

�
), the

event probability under Qt�T is determined to be higher than that under P. In other words,

a measure change from P to Qt�T tilts the probabilities such that good events are under-

weighted and bad events are over-weighted. This implies that the probability ratio between

the two measures contains crucial information about how investors perceive a certain event,

whether it be good or bad.

This interpretation still holds when we project both sides of equation (4) on future realized

inflation. If the risk-adjusted probability is lower (higher) than the subjective probability for

a certain realization of inflation, it indicates that investors regard it as a good (bad) economic

outcome that is associated with lower (higher) marginal utility on average. As such, we can

define and determine good inflation versus bad inflation, as perceived by investors, based on

the probability ratio between the two measures.

4.1 Implied conditional pricing kernel

We begin by examining the implied pricing kernel, projected on inflation over the next calendar

year. To take the ratio between the risk-adjusted and physical probability distributions, we

first need to ensure they are directly comparable. In the case of the risk-adjusted distribution,

inflation options allow us to nonparametrically estimate the entire probability density function

over a continuous domain, as outlined in Section 3. Using this density, we calculate the

probabilities of inflation falling into 20 distinct inflation ranges, from -3% to 7%, with 0.5%

intervals. By averaging these risk-adjusted probabilities within each quarter, we obtain a

quarterly measure that aligns with the timing and frequency of the SPF survey. Panel A of

Figure 6 presents the unconditional average of the resulting quarterly risk-adjusted inflation

distributions over our sample period.

The survey-based distribution requires additional processing. For each quarter, we convert

the bucket probabilities provided by the survey into a cumulative distribution function and
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Figure 6: Unconditional inflation densities for the next calendar year. This figure presents the
unconditional inflation densities. Panel A provides the risk-adjusted distribution Q, which is derived from op-
tions prices. Panel B shows the survey-based distribution P of inflation derived from the Survey of Professional
Forecasters (SPF). Panel C displays the log of the probability ratio between the risk-adjusted and survey-based
distributions logpQ{Pq, with yellow bars indicating good inflation and the blue bars indicating bad inflation.
The distributions illustrate the probabilities of different inflation outcomes over the next calendar year. The
sample period is from 2009Q4 to 2024Q2. All values are in percentages.

interpolate these values using a smooth spline function. For both ends of the tail, we adopt a

decaying tail function, fitting it to match the probability of the last unbounded bucket. The

resulting inter/extrapolated distribution function is defined over a continuous domain and

reproduces the same bucket probabilities as the survey data. This fitting exercise serves two

key purposes. First, it allows us to study the survey-based distribution over finer intervals,

which is particularly useful in the earlier part of the sample where inflation buckets are wider.

Second, it transforms the two extreme unbounded buckets into a series of bounded buckets

with 0.5% intervals, making them directly comparable to the risk-adjusted distribution. The

unconditional average of the survey-based distributions is displayed in Panel B of Figure 6.

Panel C depicts the log ratio of risk-adjusted to survey-based probabilities, which corre-

sponds to the log of the probability distortion factor in equation (4). Thus, a given inflation

range can be interpreted as “bad” if the log probability ratio is positive (blue bars), or “good”

if the log probability ratio is negative (yellow bars). As shown in Panel C, the log proba-

bility ratio exhibits an unconditional U-shaped pattern, with positive values (indicating bad

inflation) in the tails and negative values (indicating good inflation) in the middle ranges.

This pattern suggests that investors tend to exhibit aversion to both high and low inflation

environments, while favoring inflation outcomes around 2%.
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(C) 2022Q2
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Figure 7: Conditional inflation densities for the next calendar year. This figure presents the condi-
tional inflation densities for the second quarters of 2018 (Panel A), 2020 (Panel B), and 2022 (Panel C). Each
panel contains three graphs: the risk-adjusted distribution Q (left), the survey-based distribution P (center),
and the log probability ratio logpQ{Pq (right). In Panel C, the yellow bars indicate good inflation, while the
blue bars indicate bad inflation. The distributions illustrate the probabilities of different inflation outcomes
over the next calendar year. The sample period is from 2009Q4 to 2024Q2. All values are in percentages.

Moreover, there is significant time variation in both the survey-based and risk-adjusted

probabilities, as discussed in Sections 2 and 3. This time variation also affects the probability

ratio, reflecting shifts in investors’ preferences toward inflation over time. To illustrate, Fig-

ure 7 presents the risk-adjusted probabilities (left graphs), survey-based probabilities (center

graphs), and the log ratio between them (right graphs) for three different quarters: the sec-

ond quarters of 2018 (Panel A), 2020 (Panel B), and 2022 (Panel C). Focusing on the log
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probability ratio (right graphs), during relatively normal times like the second quarter of 2018

(Panel A), the good inflation region is relatively small and tightly centered around 2%. In

the second quarter of 2020 (Panel B), when deflation risk became a greater concern, the good

inflation region substantially expands, and the U-shaped pattern of the log probability ratios

tilted, with a steeper slope on the negative side. In contrast, during the inflationary period of

2022 (Panel C), investors exhibited a relatively stronger aversion to high inflation outcomes.

The overall U-shaped pattern becomes much less pronounced, and the good inflation region

shifts more to the right. Despite these variations across the three periods, it is noteworthy

that the U-shaped pattern in the probability ratios persists consistently.

How can we interpret these patterns? One way to rationalize the observed dynamics is by

considering the information that future inflation realizations convey about future economic

growth. For instance, in the inflationary environment of 2022, high inflation over the next

year is clearly perceived as bad news, suggesting a significant risk of stagflation. However, low

inflation outcomes during this period could have mixed interpretations. On the one hand, they

may signal a return to the normalcy seen in 2018; on the other hand, they could indicate a hard

landing, where the Fed’s policies drive the economy into recession, resulting in low inflation

rates. To clarify, a sharp decline from the high inflation rates of summer 2022 to lower levels

(e.g., 1%) is unlikely to be interpreted as positive news, as it is more likely associated with a

hard-landing scenario. This reasoning helps explain why investors’ preferred range of inflation

varies over time: it is not simply the level of inflation that matters, but the changes and the

economic signals they convey, which play a significant role in shaping preferences.

In fact, the time variation in both risk-adjusted and survey-based probabilities provides

further insight into how investors’ preferences for inflation outcomes evolve. Figure 8 illustrates

the time-varying nature of the good inflation range over the sample period. For each quarter,

the yellow region represents the area where the risk-adjusted probabilities are lower than their

survey-based counterparts, indicating inflation levels that investors perceive as favorable (i.e.,

good inflation region). Conversely, the blue region highlights the inflation levels where risk-

adjusted probabilities exceed survey-based probabilities, signaling outcomes that investors are
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Figure 8: Good and bad inflation regions for the next calendar year. This figure illustrates the
time series of the good (yellow bars) and bad inflation (blue bars) regions. The distributions illustrate the
probabilities of different inflation outcomes over the next calendar year. The sample period is from 2009Q4
to 2024Q2. All values are in percentages.

more averse to (i.e., bad inflation region).

This figure clearly shows that the good inflation range is not fixed throughout the sample

period. During periods of low inflation, such as the aftermath of the 2008 financial crisis or

the onset of the COVID-19 crisis, the good inflation range tends to shift downward, reflect-

ing investor preferences for inflation outcomes closer to the lower end of the spectrum. As

inflationary pressures ease, the range of inflation levels perceived as favorable by investors

contracts toward lower levels. In contrast, during the inflation surge of 2022, the good infla-

tion range shifts significantly upward. By the end of 2022, the range no longer includes the

2% inflation rate, a figure historically viewed as an ideal target by central banks. This upward

shift illustrates the changing perceptions of what constitutes favorable inflation, as investors

respond to the prevailing economic environment. As inflation began to decline toward the end

of the sample period in 2023, the good inflation range shifted downward once again, reflecting

investors’ evolving preferences as inflation risks subsided.

4.2 Inflation premium and its decomposition

Another way to gauge the variation in investors’ preferences is by examining the inflation risk

premium. The inflation risk premium is defined as the difference between the risk-adjusted

28



and survey-based expected inflation rates:

ipt,tÑt�T � EQt�T

t

�
T
a
ΠtÑt�T

�
� Et

�
T
a
ΠtÑt�T

�
. (5)

Using the conditional distributions of inflation under the risk-adjusted and survey-based

probability measures, we can calculate the inflation risk premium for the next calendar year.

Figure 9 displays the variation in the December-to-December inflation risk premium over the

sample period. The premium fluctuates significantly, with greater variation observed toward

the end of the sample, particularly from 2020 onward. Periods with a positive inflation

premium suggest that investors are concerned about high inflation, while periods with a

negative premium indicate that inflation is predominantly viewed favorably.
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Figure 9: Time series of inflation risk premium for the next calendar year. This figure presents the
time series of the inflation risk premium, calculated as the difference between risk-adjusted and survey-based
expected inflation. The distributions illustrate the probabilities of different inflation outcomes over the next
calendar year. The sample period is from 2009Q4 to 2024Q2. All values are in percentages.

For instance, negative inflation premiums are predominant during 2011-2012, 2015-2016,

and 2020. The most significant negative spike occurs in 2020, during the COVID-19 pandemic,

when heightened uncertainty and a substantial drop in consumer spending led to lower inflation

expectations. The lowest inflation premium in the sample, at -2.12%, is observed in the second

quarter of 2020. Conversely, from early 2021 to the end of 2022, the inflation risk premium

turns positive, marking a significant shift in investor sentiment. During this period, the

U.S. experienced its highest inflation rates in over 40 years, leading to fears of stagflation

reminiscent of the 1970s. The maximum inflation premium in the sample, 2.11%, is recorded
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in the first quarter of 2022, coinciding with the Fed’s aggressive rate hikes and tightening

policies aimed at combating inflation. However, as inflation expectations begin to decrease

toward the end of the sample in early 2023, the inflation risk premium also declines, reflecting

changing investor perceptions.

Next, we apply the methodology from Beason and Schreindorfer (2022), who use options

and return data to decompose the equity risk premium into different parts of the return

state space. We adopt a similar approach to decompose the inflation risk premium into

compensation for different inflation outcomes. The inflation premium associated with a range

rπL, πU s is defined as:

ip
rπL,πU s
t,tÑt�T �

» πU
πL

x
�
Qt�T

�
T
a
ΠtÑt�T � 1 � x

	
� P

�
T
a
ΠtÑt�T � 1 � x

	�
dx. (6)

Comparing equations (5) and (6) makes it clear that ip
r�8,8s
t,tÑt�T � ipt,tÑt�T . Unlike Beason

and Schreindorfer (2022), who focus on the unconditional equity premium due to the difficulty

of accurately estimating conditional distributions for stock returns under the physical measure,

we can analyze both the conditional and unconditional inflation risk premiums using survey-

based inflation densities.
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Figure 10: Unconditional decomposition of inflation risk premium for the next calendar year.
This figure presents the unconditional decomposition of the inflation risk premium. The yellow dashed line
represents the average inflation risk premium, and the blue bars represent the contribution of different inflation
ranges to the overall premium. The distributions illustrate the probabilities of different inflation outcomes
over the next calendar year. All values are in percentages.
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Figure 10 presents the decomposition results for the unconditional inflation premium.

In equation (6), the inflation premium for a range of outcomes is determined by both the

likelihood of that outcome and the relative difference between risk-adjusted and survey-based

probabilities. As such, it is not surprising that the contribution diminishes as we consider the

less likely tail ranges. While the unconditional inflation premium over the sample period is only

-4 bp, different ranges of inflation outcomes are associated with premiums ranging from -30

bp for inflation in the r2%, 2.5%q range to 13 bp for inflation between r4.5%, 5%q. Despite the
significance of premiums associated with certain ranges, the total inflation premium remains

small due to the offsetting of positive and negative premiums linked to different ranges. This is

primarily due to the U-shaped pattern observed in the projection of the pricing kernel. Thus,

averaging over the time dimension masks substantial variation in the inflation premium.
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(C) 2022Q2
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Figure 11: Conditional decomposition of inflation risk premium for the next calendar year. This
figure presents the conditional decomposition of the inflation risk premium for the second quarters of 2018
(Panel A), 2020 (Panel B), and 2022 (Panel C). The yellow dashed line represents the average inflation risk
premium, and the blue bars represent the contribution of different inflation ranges to the overall premium.
The distributions illustrate the probabilities of different inflation outcomes over the next calendar year. All
values are in percentages.

Figure 11 shows the decomposition results for the conditional inflation premium for three

different quarters: the second quarters of 2018 (Panel A), 2020 (Panel B), and 2022 (Panel C).

The unconditional decomposition conceals significant variation in the premiums associated

with various inflation ranges. Panel A demonstrates that in 2018, the inflation premium for

different ranges closely mirrors the unconditional results. However, Panel B reveals that in

2020, there is a substantial premium associated with negative inflation outcomes, amounting

to -2.12%. Unlike in 2018, high inflation outcomes do not contribute to the inflation premium
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in 2020. These significant changes are even more pronounced in 2022, as shown in Panel C.

During this period, a substantial premium is associated with outcomes exceeding 4.5%. In

contrast to 2018, inflation outcomes in the r3%, 4%q range are considered desirable in 2022,

thus decreasing rather than increasing the total inflation premium.

4.3 Pricing of long-term inflation risk

Next, we turn to the implied pricing kernel, projected on inflation over a longer term. Figure 12

presents the unconditional inflation densities for different inflation outcomes over the next

five years. Panel A shows the risk-adjusted distribution implied from 5-year inflation options,

Panel B displays the survey-based distribution of inflation derived from the SPD, and Panel C

illustrates the log probability ratio between the two distributions. Compared to Figure 6,

which shows the results for the 1-year horizon, Panel C presents a qualitatively similar but

much less pronounced U-shaped pattern. As a result, the good inflation region (below zero;

yellow bars) becomes narrower.
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Figure 12: Unconditional inflation densities for the next five years. This figure presents the uncon-
ditional inflation densities. Panel A provides the risk-adjusted distribution Q, which is derived from options
prices. Panel B shows the survey-based distribution P of expected inflation derived from the Survey of Primary
Dealers (SPD). Panel C displays the log of the probability ratio between the risk-adjusted and survey-based
distributions logpQ{Pq, with yellow bars indicating good inflation and the blue bars indicating bad inflation.
The distributions illustrate the probabilities of different inflation outcomes over the next five years. The
sample period is from December 2014 to June 2024. All values are in percentages.

To understand shifts in investors’ preferences at different points in time, Figure 13 illus-

trates the conditional inflation densities for survey responses collected before the fourth FOMC

meeting in June of 2018 (Panel A), 2020 (Panel B), and 2022 (Panel C). Each panel contains
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(B) June 2020
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(C) June 2022
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Figure 13: Conditional inflation densities for the next five years. This figure presents the conditional
inflation densities collected before the fourth FOMC meeting for three different years: June 2018 (Panel A),
June 2020 (Panel B), and June 2022 (Panel C). Each panel contains three graphs: the risk-adjusted distribution
Q (left), the survey-based distribution P (center), and the log probability ratio logpQ{Pq (right). In Panel C,
the yellow bars indicate good inflation, while the blue bars indicate bad inflation. The distributions illustrate
the probabilities of different inflation outcomes over the next five years. The sample period is from December
2014 to June 2024. All values are in percentages.

three graphs: the risk-adjusted probabilities (left), survey-based probabilities (center), and

the log probability ratio (right). In 2018 (Panel A), the good inflation region (yellow bars) is

within a narrow range with little deviation from 2%. This range begins to deviate more in

2020 (Panel B) and eventually becomes wider, shifting to the right in 2022 (Panel C). Overall,

the good inflation regions for the 5-year horizon are much smaller and more concentrated,

compared to those for the next calendar year. This makes sense: when long-term inflation
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expectations are anchored, investors’ preferred range of inflation should vary less in the long

run.
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Figure 14: Good and bad inflation regions for the next five years. This figure illustrates the time series
of the good (yellow bars) and bad inflation (blue bars) regions. The distributions illustrate the probabilities
of different inflation outcomes over the next five years. The sample period is from December 2014 to June
2024. All values are in percentages.

This point is further highlighted in Figure 14, which depicts the time-varying ranges of

good and bad inflation over the next five years, with each bar representing a quarter. The

portions of the bars shaded in yellow reflect the good inflation region, whereas those shaded

in blue reflect the bad inflation region. As can be seen in the figure, the good inflation region

remains relatively stable throughout the sample period, although around 2022, it shifts upward

and slightly widens.

We now turn to the inflation risk premium for the next five years to gauge the variation

in investors’ preferences for inflation over a longer term. Figure 15 presents the time series of

the inflation risk premium for the next five years over the sample period. The inflation risk

premium fluctuates between positive and negative values, indicating shifts in investor senti-

ment regarding inflation. A positive premium suggests that investors demand compensation

for higher inflation risks, while a negative premium reflects a favorable view of inflation. We

observe that periods of negative inflation premium dominate from December 2014 through

2020, especially during crises like the COVID-19 pandemic, where there is a significant drop.

The inflation risk premium becomes positive from early 2021 to 2022, driven by the sharp

increase in inflation during this period.

When juxtaposing this time series with that of the next calendar year (Figure 9), we see
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Figure 15: Time series of inflation risk premium for the next five years. This figure presents the
time series of the inflation risk premium, calculated as the difference between risk-adjusted and survey-based
expected inflation. The distributions illustrate the probabilities of different inflation outcomes over the next
five years. The sample period is from December 2014 to June 2024. All values are in percentages.

that while the general patterns between the two are similar, the time series for the 5-year

horizon is smoother, exhibiting less magnitude and variation than the 1-year horizon. In

addition, the response to economic events is less pronounced, as the longer forecast horizon

tempers the immediate reactions seen in the shorter horizon. For example, while the 1-year

horizon sharply spikes to its highest levels in 2022, the 5-year horizon shows a more sustained

but less dramatic increase. Toward the end of the sample period in 2024, the inflation risk

premium becomes smaller in both figures.
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Figure 16: Unconditional decomposition of inflation risk premium for the next five years. This
figure presents the unconditional decomposition of the inflation risk premium. The yellow dashed line rep-
resents the average inflation risk premium, and the blue bars represent the contribution of different inflation
ranges to the overall premium. The distributions illustrate the probabilities of different inflation outcomes
over the next five years. All values are in percentages.

To gain deeper insight into the inflation risk premium, Figure 16 depicts the decomposition
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of the unconditional inflation risk premium for the next five years. The unconditional inflation

premium is small, at -10 bp. Moderate inflation ranges near 2% result in the largest negative

contributions to the risk premium, which overpower positive contributions from higher infla-

tion ranges. Note that the contributions from low inflation ranges are very small: although

investors dislike future deflation (as shown in Panel C of Figure 12), the likelihood of such an

outcome is too small to generate a meaningful premium.
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Figure 17: Conditional decomposition of inflation risk premium for the next five years. This
figure presents the conditional decomposition of the inflation risk premium for the second quarters of 2018
(Panel A), 2020 (Panel B), and 2022 (Panel C). The yellow dashed line represents the average inflation risk
premium, and the blue bars represent the contribution of different inflation ranges to the overall premium.
The distributions illustrate the probabilities of different inflation outcomes over the next five years. All values
are in percentages.

Finally, Figure 17 provides the conditional decomposition of the inflation risk premium

for the next five years, illustrating how different inflation ranges contribute to the overall

premium during the second quarters of 2018 (Panel A), 2020 (Panel B), and 2022 (Panel C).

The patterns are similar to those observed from the conditional decomposition of the inflation

risk premium for the next calendar year (Figure 11). However, the patterns are much smoother

for the 5-year horizon, reflecting more stable inflation expectations over a longer period.

5 Economic model with learning

We rationalize the empirical patterns we document using a model in which investors cannot

precisely observe the true state of the economy. Due to this information friction, investors

form their beliefs about two bad economic states: an inflationary recession and a deflationary
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recession. The fear of these states generates a conditional pricing kernel that is U-shaped

when projected on future inflation. Investors’ preferences for different inflation ranges vary

over time as they learn and update their beliefs, which aligns with our empirical observations.

5.1 Model setup and solution

We consider an endowment economy with complete markets, where investors have recursive

preferences as described by Epstein and Zin (1989) and Weil (1989). Time is discrete, and a

unit period between time t and time t � 1 now represents a month. The stochastic discount

factor or the real pricing kernel Mt�1 is given by

Mt�1 � exp

�
θ log δ � θ

ψ
∆ct�1 � pθ � 1qrc,t�1



, (7)

where ∆ct�1 � log
�
Ct�1

Ct

	
denotes log aggregate consumption growth and rc,t�1 represents

the log return on a security that delivers aggregate consumption as dividends (commonly

referred to as the consumption claim). The parameters δ and ψ correspond to the rate of

time preference and the elasticity of intertemporal substitution, respectively. The coefficient

θ � 1�γ
1�1{ψ

reflects investors’ preferences for the timing of uncertainty resolution, where γ

represents relative risk aversion. Since the Euler equation must hold for real prices of nominal

assets (see, e.g., Piazzesi and Schneider, 2006; Wachter, 2006; Bansal and Shaliastovich, 2013),

the nominal pricing kernel is specified by

M$
t�1 � e�πt�1Mt�1, (8)

where πt�1 � log
�
CPIt�1

CPIt

	
denotes the log inflation rate.

5.1.1 Consumption and inflation dynamics and investors’ learning

We assume that the true state of the economy follows a Markov-switching process with three

potential regimes: st�1 P tn, i, du. State n represents normal or favorable economic conditions,

characterized by relatively high consumption growth and moderate inflation. In contrast, the
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other two regimes capture bad economic conditions with low consumption growth. State

d reflects a deflationary recession where low growth comes with very low and potentially

negative inflation, exemplified by the Great Depression in the 1930s. State i corresponds to

an inflationary recession where low growth coincides with a sharp increase in inflation, as seen

during the stagflation of the 1970s. The transition matrix P governs the dynamics of the

regime-switching process:

P �

�
����
pnn pnd pni

pdn pdd pdi

pin pid pii

�
���� ,

where pss1 � P pst�1 � s1|st � sq represents the transition probability from state s to state s1.

We model the different consumption and inflation dynamics across the three states by

assuming their conditional means are state-dependent:

∆ct�1 � µcst�1
� σcϵct�1, (9)

πt�1 � p1� φπqµπst�1
� φππt � σπϵπt�1, (10)

where ϵct�1 and ϵπt�1 are iid standard normal shocks. Specifically, given st�1 P tn, i, du, log
consumption growth follows a normal distribution with mean µcst�1

and standard deviation σc,

where µcd   0   µcn and µci   0   µcn. Log inflation follows a mean-reverting Gaussian process

with persistence φπ, mean µπst�1
, and volatility σπ. By definition, the deflationary recession

regime has the lowest mean log inflation, whereas the inflationary recession regime has the

highest: µπd   µπn   µπi .

Despite these distinct consumption and inflation dynamics, investors cannot precisely iden-

tify which economic state they are in, as st�1 is not observable. The information friction

arises from the fact the conditional means (µcst�1
and µπst�1

) are not separately observable from

the transitory shocks (ϵct�1 and ϵπt�1) although realized consumption and inflation (∆ct�1 and

πt�1) themselves are observable. Under this imperfect information, investors form their beliefs
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based on the historical time series of consumption ∆c�8:t�1 � t∆ck|k ¤ t � 1u and inflation

π�8:t�1 � tπk|k ¤ t� 1u.
Let ξs,t denote investors’ time-t belief that the economy is in state s P tn, d, iu at time t:

ξs,t � ξs,t|t � P pst � s|Ftq,

where investors’ time-t information set Ft consists of the past consumption and inflation

realizations: Ft � t∆c�8:t, π�8:tu. This belief is updated to ξs,t�1 � P pst�1 � s|Ft�1q
when investors observe new realizations of consumption growth ∆ct�1 and inflation πt�1 at

time t � 1. Recent empirical evidence suggests that this belief updating process may not

be perfectly Bayesian. Based on SPF inflation forecasts, Coibion and Gorodnichenko (2015)

document that ex-post forecast errors are predicted by ex-ante forecast revisions with a positive

coefficient, which can be directly linked to the degree of information rigidity. Consistent with

this, our model allows for a potential departure from the Bayesian benchmark:

ξs,t�1 � p1� λq � ξBayes

s,t,t�1 � λ� ξs,t,

where ξBayes

s,t,t�1, which is a function of the new information (∆ct�1, πt�1) and previous beliefs

pξd,t, ξi,tq, represents investors’ new belief if they were perfectly rational and updated their

beliefs in a Bayesian fashion. According to Bayes’ rule,

ξBayes

s,t,t�1 �
P pst�1 � s|FtqP p∆ct�1, πt�1|st�1 � s,Ftq°

s1Ptn,d,iu P pst�1 � s1|FtqP p∆ct�1, πt�1|st�1 � s1,Ftq , (11)

where the denominator equals P p∆ct�1, πt�1|Ftq but can be expressed as above due to the law

of total probability. With a positive degree of information rigidity (λ ¡ 0), investors’ belief

updating is sticky and puts λ as a weight on the past belief ξs,t. This leads to a positive slope

coefficient when forecast errors are regressed on forecast revisions. As highlighted by Coibion

and Gorodnichenko (2015), this regression coefficient enables us to pin down the parameter

value of λ. In the absence of information rigidity (λ � 0), investors’ learning dynamics return
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to the Bayesian case where forecast errors and forecast revisions are uncorrelated.

With the probability of observing the new consumption and inflation realizations (∆ct�1

and πt�1) in the denominator, the numerator of equation (11) considers the likelihood that

the observed realizations were generated under state s. This is a product of two probabilities.

The first one is P pst�1 � s|Ftq, the probability that the true state of the economy is s at time

t� 1, which purely depends on the transition dynamics of the state between time t and time

t� 1, given the time-t information set. Denoting this as ξs,t�1|t � P pst�1 � s|Ftq, we have

rξn,t�1|t ξd,t�1|t ξi,t�1|ts � rξn,t ξd,t ξi,ts � P .

The second one is P p∆ct�1, πt�1|st�1 � s,Ftq, the probability of observing the new consump-

tion and inflation realizations if the true state is indeed st�1 � s. This term is crucial for

investors’ learning, as it determines how the new information is incorporated into their be-

liefs. According to the consumption and inflation dynamics in equations (9) and (10), this

probability is given by

P p∆ct�1, πt�1|st�1 � s,Ftq 9 exp

"
�1

2

��
ϵ̃cs,t�1

�2 � �ϵ̃πs,t�1

�2�*
,

where ϵ̃cs,t�1 � ∆ct�1�µcs
σc and ϵ̃πs,t�1 � πt�1�p1�φπqµπs�φ

ππt
σπ .

5.1.2 Equilibrium price-consumption and price-dividend ratios

We solve the model by finding the log price-consumption ratio pct � log pP c
t {Ctq where P c

t

denotes the price of the consumption claim. In equilibrium, the log return on the consumption

claim rc,t�1 � log p1� epct�1q � pct �∆ct�1 must satisfy the Euler equation:

Et rexp plogMt�1 � rc,t�1qs � 1, (12)

where Et represents investors’ time-t expectation under their subjective probability measure.

By plugging the expression for the pricing kernel (equation (7)) and that for log consumption
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growth (equation (9)) into the Euler equation, we recursively define the price-consumption

ratio as follows:

pct � log δ � 1

θ
logEt

�
ep1�γq∆ct�1 p1� epct�1qθ

�
.

The Markov property dictates that pct is a function of ξs,t for s P tn, d, iu. Since the three

beliefs always sum to 1 at any given time, we can specify the solution in terms of just the two

beliefs associated with the deflationary and inflationary recession regimes: pct � pcpξd,t, ξi,tq.
We numerically solve for pc over a two-dimensional grid of ξd,t and ξi,t by searching for the

fixed point of equation (13); the nonlinearity introduced by investors’ learning dynamics does

not permit a closed-form solution. See Ghaderi, Kilic, and Seo (2022) and Ghaderi, Kilic, and

Seo (2024) for details on the numerical procedure.

As the model counterpart of the aggregate stock market, we consider a security that pays

aggregate dividends, which are proxied by levered consumption Dt � eµ
d�σdϵdt�1Cϕ

t . The log

return on this dividend claim is expressed as rd,t�1 � log
�
1� epdt�1

��pdt�ϕ∆ct�1�µd�σdϵdt�1

and should satisfy the following Euler equation in equilibrium:

Et rexp plogMt�1 � rd,t�1qs � 1, (13)

where pdt � log
�
P d
t {Dt

�
denotes the log price-dividend ratio. Equation (13) leads to the

following recursive relation between pdt and pdt�1:

pdt � θ log δ � pθ � 1qpct � µd � 1

2
pσdq2 � logEt

�
epϕ�γq∆ct�1 p1� epct�1qθ�1

�
1� epdt�1

��
,

which is also solved numerically. Consequently, we can characterize the price-dividend ratio

as a function of the two beliefs: pdt � pdpξd,t, ξi,tq.
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5.1.3 Term structures of model quantities

In this section, we describe a recursive method to compute the term structures of various

model quantities based on our model. We start with the price of a risk-free nominal zero-

coupon bond, which is a function of three key state variables: the current inflation rate πt

and investors’ two beliefs ξd,t and ξi,t. Thus, we denote the bond price as Dpπt, ξd,t, ξi,t;Kq,
where K represents the number of periods until maturity. The pricing relation implies:

Dpπt, ξd,t, ξi,t;Kq � Et
�
M$

tÑt�K

� � Et

�
K¹
k�1

M$
t�k

�
� Et

�
M$

t�1Et�1

�
K¹
k�2

M$
t�k

��
,

where the last equality holds due to the law of iterative expectations. This expression provides

us with a recursive formula for the term structure of zero-coupon bond prices:

Dpπt, ξd,t, ξi,t;Kq � Et
�
M$

t�1Dpπt�1, ξd,t�1, ξi,t�1;K � 1q� .
Similarly, we obtain the term structure of inflation expectations using a recursive formula.

For instance, let πepπt�1, ξd,t, ξi,t;Kq � Et
�°K

k�1 πt�k

�
denote the expected log cumulative

inflation rate over the next K periods. This quantity can be written as

πepπt, ξd,t, ξi,t;Kq � Et

�
πt�1 � Et�1

�
Ķ

k�2

πt�k

��
� Et rπt�1 � πepπt�1, ξd,t�1, ξi,t�1;K � 1qs ,

which enables us to find its value recursively. Similarly, the term structure for gross or

annualized inflation can be calculated in a recursive fashion.

Next, we turn to the term structure of the inflation density P
�°K

k�1 πt�k � x
��� Ft

	
. By

the law of total probability,

P

�
Ķ

k�1

πt�k � x
��� Ft

�
�

»
P

�
Ķ

k�1

πt�k � x
��� Ft�1

�
dG

�
∆ct�1, πt�1

��� Ft

	
,

�
»
P

�
� Ķ

k�2

πt�k � x� πt�1looomooon
� x1

��� Ft�1

�
dG�∆ct�1, πt�1

��� Ft

	
,
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where G represents the joint distribution of ∆ct�1 and πt�1 conditional on Ft. Denoting the

density by ρ px, πt, ξd,t, ξi,t;Kq, the equation leads to the following recursion:8

ρ px, πt, ξd,t, ξi,t;Kq �
»
ρ px1, πt�1, ξd,t�1, ξi,t�1;K � 1q dG

�
∆ct�1, πt�1

��� Ft

	
.

Once we obtain the conditional density of the average log inflation rate, we can easily transform

it into the density of the average annualized inflation rate (which can be compared to the data)

using a change of variable technique.

Finally, note that our recursive method also directly applies to inflation expectations and

densities under the risk-adjusted probability measure. The only adjustment is to re-weight

the probability distribution under P with the Radon-Nikodym derivative or the probability

distortion factor MtÑt�K

EtrMtÑt�K s
� MtÑt�K

Dpπt,ξd,t,ξi,t;Kq
.

5.2 Calibration and asset pricing moments

Our model is calibrated at a monthly frequency, with the parameter values listed in Table 3.

Panel A shows three preference parameters that describe investors’ risk preferences. The

coefficient of relative risk aversion γ is chosen to be 5, and the elasticity of intertemporal

substitution ψ is set to 1.5. A subjective monthly discount rate is 0.9990, which corresponds

to an annual discounting of 1.2%.

Panel B of Table 3 outlines the characteristics of the three regimes in our model: normal

(n), deflationary recession (d), and inflationary recession (i). In the normal state, consump-

tion grows at an average annual rate of 3%, while inflation averages 2%. For the recessionary

states (d and i), we aim to capture severe economic downturns, akin to the Great Depression

or the stagflation of the 1970s. Therefore, we set the average annual consumption growth at

-5% and -3% for these two regimes, respectively. Despite similarities in consumption growth,

8Under our inflation dynamics in equation (10), the following identify holds:

ρ px, πt�1, ξd,t�1, ξi,t�1;Kq � ρ

�
x� φ

1� φK

1� φ
pπt�1 � πtq, πt, ξd,t�1, ξi,t�1;K



,

for any pair of πt and πt�1. This allows us to reduce the dimensionality of our numerical procedure, as it
suffices to find the density ρ only for one value of πt.
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these regimes differ markedly in inflation behavior: deflationary recessions exhibit an average

annual deflation rate of -3%, whereas inflationary recessions are characterized by a high in-

flation rate of 12%. We calibrate endowment volatility to an annual rate of 1.5% across all

regimes, reflecting the relatively stable consumption growth volatility observed in the post-war

period. Inflation volatility is set at 0.25% annually, which, although lower than the roughly

1% volatility observed in monthly inflation data, better represents inflation under the normal

regime. In our model, inflation acts as an informative signal influencing learning dynamics.

While headline inflation is often swayed by transient fluctuations in food and energy prices,

investors are expected to focus on the more stable, persistent components of the price index

to form their beliefs. Lastly, we set the persistence of monthly inflation at 0.5, in line with

historical data.

Panel A: Preferences

Relative risk aversion, γ 5 —
Elasticity of intertemporal substitution, ψ 1.5 —
Time discount factor, δ 0.9990 Annual discounting of 1.2%

Panel B: Consumption and inflation

Mean consumption growth in state n, µc
n 0.0025 Annual growth rate of 3%

Mean consumption growth in state d, µc
d -0.0042 Annual growth rate of -5%

Mean consumption growth in state i, µc
i -0.0025 Annual growth rate of -3%

Volatility of consumption growth, σc 0.0043 Annual volatility of 1.5%
Mean log inflation in state n, µπ

n 0.0017 Annual rate of 2%
Mean log inflation in state d, µπ

d -0.0025 Annual rate of -3%
Mean log inflation in state i, µπ

i 0.0100 Annual rate of 12%
Volatility of log inflation, σπ 0.0009 Annual volatility of 0.25%
Persistence of log inflation, φπ 0.5000 —

Panel C: Regime switch and learning

Transition probability from state n to d, pnd 0.0004 Annual probability of 0.5%
Transition probability from state d to n, pdn 0.0208 Average duration of 4 years
Transition probability from state n to i, pni 0.0042 Annual probability of 5.0%
Transition probability from state i to n, pin 0.0104 Average duration of 8 years
Degree of information rigidity, λ 0.85 0.55 on a quarterly basis

Panel D: Dividends

Leverage parameter, ϕ 3 —
Independent dividend growth, µd -0.0017 Annual growth rate of -2%
Independent dividend volatility σd 0.0144 Annual growth volatility of 5%

Table 3: Model calibration parameters. This table presents the parameter values from the model
calibration. The model is calibrated at a monthly frequency. For ease of interpretation, equivalent annualized
values are also provided where applicable.
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Given the extreme properties of consumption growth and inflation under the two reces-

sionary regimes, these states naturally occur infrequently. In Panel C, the probability of

transitioning from the normal regime to a deflationary recession (pnd) is set at 0.5% annually,

implying that such events are exceedingly rare, with an expected occurrence roughly once

every two centuries. In contrast, the transition probability from the normal regime to an

inflationary recession (pni) is set at 5.0%, reflecting the fact that the U.S. economy has expe-

rienced multiple inflationary recessions in the post-war period. This probability is ten times

higher than that of a deflationary recession. The probabilities of returning to the normal

state from the recessionary regimes reflect the typical duration of such downturns. For the

deflationary regime, we set pdn at 25% annually, suggesting an average recession length of four

years, consistent with historical episodes such as the Great Depression and the Long Depres-

sion of the 1870s. Inflationary recessions, however, are modeled to be twice as persistent, with

pin set at 12.5%, consistent with the extended inflationary periods seen during the late 1960s

and 1970s. For simplicity, we do not allow for direct transitions between the two recessionary

regimes in our calibration.

Lastly, we set the parameter governing the stickiness of beliefs λ to 0.85. This choice is

informed by the findings of Coibion and Gorodnichenko (2015), who, using quarterly regres-

sions of forecast errors on forecast revisions, estimate that in updating inflation expectations,

forecasters put approximately 54% weight on their prior beliefs, leaving 46% for new informa-

tion. At the monthly frequency of our calibration, the weight assigned to the new Bayesian

update is 1 � λ � 0.15. This aligns well with the evidence of Coibion and Gorodnichenko

(2015) as, ignoring the non-linearities of the updating procedure, the weight assigned to new

information in a quarter would be around 3� 0.15 � 0.45.

Finally, to model the equity market dynamics, we set the leverage parameter ϕ to 3, which

is consistent with the standard range commonly used in the literature (see, e.g., Bansal and

Yaron, 2004; Bansal, Kiku, and Yaron, 2012; Wachter, 2013). We calibrate µd, the mean

dividend growth rate that is independent of consumption growth, to -2%, ensuring that the

average growth rate of dividends does not deviate significantly from consumption growth, as
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observed in the data. Additionally, we assign an independent annual volatility of 5% for σd.

To demonstrate the quantitative validity of our calibration, we analyze the population

characteristics of the model by simulating a long sample spanning 100,000 years. As shown in

Table 4, the model preserves low consumption volatility over this long sample, with a value

of 1.70%, closely aligned with post-war data (1.52%). Importantly, the model successfully

addresses key asset pricing puzzles, generating a high equity premium (6.73% versus 6.57% in

the data) and high market volatility (13.21% versus 16.46% in the data), while maintaining

a low risk-free rate (0.59% versus 0.39% in the data). Additionally, the model produces

an upward-sloping nominal term structure with a term premium of 0.57%, consistent with

empirical evidence (0.88% in the data). While the mean and volatility of the inflation rate

are slightly higher in the simulated sample (4.67% and 4.43%, respectively) than in post-war

data (3.54% and 2.81%, respectively), this discrepancy is expected given the rare nature of

the two recessionary states.

Lastly, to verify the model’s ability to capture realistic belief dynamics, we regress in-

flation forecast errors on quarterly forecast revisions, following the method of Coibion and

Gorodnichenko (2015), and find results consistent with theirs (1.32 versus 1.19). Overall, our

model effectively captures standard asset pricing moments alongside inflation dynamics and

its expectations.

σp∆ct�1q σp∆dt�1q Erπt�1s σpπt�1q βCG Errf,ts Errd,t�1 � rf,ts σprd,t�1q Ery10y � y2ys

Data 1.52 7.04 3.54 2.81 1.19 0.36 6.57 16.46 0.88

Model 1.70 7.15 4.67 4.43 1.32 0.59 6.73 13.21 0.57

Table 4: Standard asset pricing moments. This table reports the moments of consumption growth,
inflation, and asset returns in the data and in the model. σp∆ct�1q represents the standard deviation of
log consumption growth. Erπt�1s and σpπt�1q represent the average and standard deviation of the annual
inflation rate, respectively. βCG corresponds to the slope coefficient in the regression of inflation forecast
errors on forecast revisions as in Coibion and Gorodnichenko (2015). Errf,ts is the average log real risk-free
rate, while Errd,t�1 � rf,ts denotes the average excess log return on the market. σprd,t�1q is the standard
deviation of the log market return. The term premium, defined as the difference between 10-year and 2-year
Treasury yields, is represented by Ery10y � y2ys. With the exception of the term premium, which is based on
data from 1976 to 2023, all other data moments reflect the post-war sample period from 1947 to 2023. The
model moments are calculated from a long simulation spanning 100,000 years. All values are in percentages.
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5.3 Model implications

As discussed in Section 4 with equation (4), the change of measure from P to Qt�T skews the

probabilities, underweighting favorable events and overweighting unfavorable ones . As a re-

sult, a positive (negative) log probability ratio signals “bad” (“good”) inflation outcomes from

the investor’s perspective. Figure 18 evaluates the implications of our model by examining

the value of this ratio for different inflation outcomes over the next year. The figure aims to

illustrate how preferences for various inflation ranges change over time within the model. Blue

bars in the figure represent positive log probability ratios, while yellow bars indicate negative

ratios.

The figure highlights three distinct economic scenarios. In Panel A, investors are assumed

to assign a 100% probability to the “normal” regime. In contrast, Panels B and C depict

situations where the representative investor assigns a 5% probability to the occurrence of

either a deflationary (Panel B) or inflationary (Panel C) recession. Additionally, we assume

that the monthly inflation rate (π0) takes the average value associated with each respective

regime. These scenarios are chosen to establish a mapping between the model and historical

episodes from the second quarters of 2018, 2020, and 2022, as illustrated in Figure 7, allowing

us to analyze time variation in inflation preferences.

In Panel A, we observe that the “good” inflation region is relatively narrow, centered

around 2%. The model can accommodate a substantial increase in the probability ratio, and

thus the marginal utility, as inflation moves toward both low and high extremes. The stickiness

of investor beliefs results in a high level of persistence in beliefs and a substantially low

perceived chance of extreme inflation outcomes. However, if such extreme inflation outcomes

were to occur, the model implies that investors would need to experience a series of “bad”

shocks, which would persistently increase the probabilities of recessionary states (ξd or ξi).

This would, in turn, lead to a significant rise in marginal utility. Note that while the U-

shape persists under the Bayesian benchmark, achieving such high levels of marginal utility

as observed in the data would be more difficult with reasonable parameters.

Panel B illustrates a scenario with a heightened risk of a deflationary recession, similar
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Figure 18: Conditional inflation probability ratios. This figure presents the model-implied conditional
inflation probability ratios across three scenarios: normal times with moderate inflation (Panel A), heightened
risk of deflationary depression with low inflation (Panel B), and heightened risk of inflationary depression with
high inflation (Panel C). Each panel shows the log probability ratio between the risk-adjusted distribution and
the physical distribution logpQ{Pq. The distributions capture the probabilities of different inflation outcomes
over the next year. All values are in percentages.

to the economic environment of summer 2020 when concerns about a deflationary depression

intensified. Consistent with the data, this leads to an expansion of the “good” inflation range,

along with a leftward shift in the U-shape. The widening of the “good” range can be attributed

to increased overall uncertainty regarding inflation outcomes, which causes a relatively larger

increase in physical probabilities.

In contrast, Panel C depicts a scenario with a heightened risk of an inflationary recession,

reminiscent of the environment from mid-2021 to late 2022. While there is a similar expansion

of the “good” inflation range, this range is now shifted rightward. In the model, this shift

occurs due to changes in the conditional probability of inflation over the next year. Practically,

a higher belief in the likelihood of an inflationary state corresponds to higher levels of the

inflation state variable and expectations of future inflation. Given the persistent nature of

inflation shocks in both the model and the data, this shifts the entire conditional distributions

under both the risk-neutral and physical measures. Despite these differences across the three

scenarios, the U-shaped pattern in the probability ratios remains consistent, as also observed

in the data.

How does the inflation risk premium change under these three scenarios, and which ranges

of inflation outcomes contribute most to it in the model? We address these questions in

Figure 19. Following the approach of Beason and Schreindorfer (2022), we decompose the
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conditional inflation risk premium in the model for each scenario. The goal, once again, is

to establish a mapping between these model scenarios and key historical episodes shown in

Figure 11.

(A) Normal environment
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Figure 19: Conditional decomposition of the inflation risk premium. This figure presents the
model-implied conditional decomposition of the inflation risk premium across three scenarios: normal times
with moderate inflation (Panel A), heightened risk of deflationary depression with low inflation (Panel B),
and heightened risk of inflationary depression with high inflation (Panel C). Each panel shows the inflation
risk premium over the next year, together with its decomposition into compensation for different inflation
outcomes. All values are in percentages.

In the normal environment depicted in Panel A, the inflation risk premium is relatively

small, with a modest overall positive premium of 0.27%. The decomposition shows that the

model provides minimal compensation for extreme inflation outcomes. Due to the persistent

nature of beliefs, investors in this scenario assign low probabilities to such extreme outcomes.

This scenario mirrors the relatively calm environment observed during the summer of 2018,

when inflation expectations were well-anchored around 2%.

In the deflationary environment (Panel B), the inflation risk premium turns negative (-

1.01%). This situation corresponds to periods such as the summer of 2020, when fears of a

deflationary recession rose sharply due to the COVID-19 pandemic. While the “good” region

around 2% negatively contributes to the premium, the figure also highlights a significant neg-

ative contribution from inflation rates below 0%. This reflects investors’ heightened concerns

about deflation. As previously explained, because the inflation outcomes are negative, the

overall premium turns negative, despite investors’ anxieties about these potential outcomes.

Lastly, in Panel C, the model produces a substantial positive inflation risk premium of

1.28% under the heightened inflationary risk scenario. This positive contribution to the risk
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premium is concentrated in the higher inflation ranges, particularly those exceeding 4%. Con-

versely, the “good” range between 2% and 4% negatively contributes to the inflation risk

premium. These patterns are largely consistent with what we observed in Figure 11, high-

lighting the role of learning in explaining the variation in the inflation risk premium.

6 Conclusion

This paper provides novel insights into the complex nature of inflation risk and its pricing in

financial markets. By comparing survey-based and risk-adjusted probability distributions of

future inflation, we extract investors’ time-varying preferences for different inflation ranges.

Our findings reveal a U-shaped pattern in the probability ratio between these distributions,

confirming that investors generally dislike both high and low inflation environments while fa-

voring outcomes around the Fed’s 2% target. Importantly, we demonstrate that these prefer-

ences are not static but evolve significantly over time, reflecting changing economic conditions

and investor perceptions. These empirical findings are further supported by our economic

model, which incorporates learning about unobservable economic regimes.

Our exercise on the decomposition of the inflation risk premium offers a more nuanced

understanding of how different inflation ranges contribute to the overall premium. This ap-

proach allows us to identify which inflation scenarios investors find particularly concerning

at different points in time, providing valuable insights that are often masked when focusing

solely on the aggregate premium. The analysis of specific periods, such as the deflationary

concerns in 2020 and the inflationary pressures in 2022, illustrates how our methodology can

capture shifts in investor sentiment and economic outlook.
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