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Abstract

Prior studies focus on how investors’ sustainability preferences incentivize firms to real-
locate resources from dirty to clean physical capital. However, the impact of investors’
preferences on capital allocation depends critically on whether clean capital and dirty
capital are substitutable. I develop a novel empirical strategy showing that dirty cap-
ital and clean capital are highly complementary. Theoretically, I explore firms’ invest-
ment decisions, assuming that investors dislike carbon emissions through both risk and
nonpecuniary utility channels. Given the current level of complementarity, investors’
preferences have a limited impact on investment decisions, underscoring the need for
technological innovation to address this production friction.

JEL Codes: G11, G32, L21, C61

Keywords: Sustainable investing, cost of capital, real investment, climate finance



1 Introduction

How effective is sustainable investment in making firms cleaner? Prior studies have focused on

investors’ nonpecuniary preferences for green stocks or risk aversion to climate change, increasing

the costs of capital for dirty firms or production technologies (Pástor et al., 2021; Dangl et al.,

2023; Hong et al., 2023). As a result of these increased costs, firms are expected to allocate more

resources to clean technologies and reduce carbon emissions. An implicit assumption is a smooth

or frictionless transition from dirty to clean capital, suggesting that firms’ investment decisions

should depend only on investors’ sustainability demands. However, translating investors’ sustain-

ability demands into firm production is not straightforward, as the marginal value of dirty capital

can be very high due to its high complementarity in the production process.

This paper explores the complementarity between dirty capital and clean capital in limiting

the impact of sustainable investing as a real friction. “Dirty capital” refers to physical assets that

contribute to a firm’s production while generating carbon emissions, such as factories and ma-

chinery. Empirical estimates show that dirty capital remains highly complementary. A dynamic

model is then employed to examine the realistic quantitative effects on capital allocation and to

explore comparative statics with broader implications, such as carbon tax policies. The results

demonstrate that the high complementarity between clean capital and dirty capital significantly

limits the effectiveness of sustainable investing as a tool for mitigating climate change.

To illustrate complementarity versus substitutability, consider two examples. Tesla requires

both clean gigafactories and dirty factories or supply chains to manufacture lithium for its elec-

tric car batteries. Without either the clean or dirty components, production halts, demonstrating

high complementarity.1 In contrast, consider an AI company that relies on supercomputers that

generate carbon emissions (dirty) and machine learning algorithms (clean). With an ample supply

1This example illustrates complementarity and does not imply that Tesla is harmful to the environment or that
electric cars should be abandoned. Rather, this example underscores that dirty capital is complementary to clean
capital and thus vital to production across many industries and the entire economy. Therefore, investors’ sustainability
demands will be reflected only in firms’ production if the complementarity issue is directly addressed (e.g., through
R&D investments targeted at decreasing the complementarity between clean capital and dirty capital).
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of clean energy, the AI company can easily switch to sources such as wind or water to power its

supercomputers, demonstrating high substitutability between dirty capital and clean capital.

First, I build a two-period model of a typical firm to highlight the key economic mechanisms

involved. Today, the firm makes investment decisions regarding dirty capital and clean capital.

Dirty capital generates pollution, reducing the firm’s total output through a damage function, sim-

ilar to the setting in Barnett et al. (2023a). The damage function and the overall economic setting

are specified to align with previous climate economics and finance models (Nordhaus and Sztorc,

2013; Nordhaus, 2014; Cai and Lontzek, 2019; Barnett et al., 2020). However, these models often

include additional layers that link the damage function to an increased frequency or severity of

natural disasters due to global warming. My model abstracts from those extra layers, simplifying

the approach and allowing for a broader interpretation of the damage function. For instance, the

damage function can also account for firm reputation, such as the possibility that consumers may

have lower demand for products from firms perceived as environmentally harmful.

In the model, the firm maximizes the present value of its cash flows while incorporating sustain-

ability concerns in its projected cash flows and pricing kernel. First, the firm includes a positive

price of the damage shock in the pricing kernel, which may reflect climate change risk concerns or

the direct cost of capital effects from investors’ sustainability preferences. Second, the firm fully

internalizes the damage function’s impact on its cash flows. This naturally applies to immediate

cash flow effects (e.g., the reputational cost of high carbon emissions). However, the environmental

effect on productivity is better understood as an externality; thus, full internalization should be

interpreted through the lens of shareholder welfare maximization with sustainable investors (see

Hart and Zingales, 2017).2 The results suggest that even in an ideal scenario where both investors

and the firm align in terms of sustainability goals, the complementarity of dirty capital obstructs

the firm’s shift to clean capital.

2Hart and Zingales (2017) demonstrates that if profit and damage are inseparable, shareholder welfare is not
equivalent to market value, making shareholder welfare the appropriate objective function in this context. I model
this aspect in reduced form through the firm’s full internalization of the damage function.
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From the first-order conditions of a firm’s investment decisions, marginal investment benefits

and costs equate. Unlike clean capital, dirty capital generates pollution and damage, diminishing

its marginal benefits. Shareholders’ aversion to pollution and damage raises the cost of dirty capi-

tal, encouraging the firm to reduce its investment in it. However, the firm cannot invest exclusively

in clean capital if dirty capital is complementary. For example, with a Cobb-Douglas production

function, total output would drop to zero without dirty capital. When complementarity is high,

the marginal benefits of dirty capital can be substantial, potentially offsetting the damage and

shareholders’ preferences for cleaner options.

Thus, a natural question arises: How complementary is dirty capital in the data? Building

on the theoretical framework and the approach in Chirinko and Mallick (2017), a novel method is

developed to empirically estimate the elasticity of substitution (ES) for dirty capital. The firm’s

production function follows a constant elasticity of substitution (CES) form, with dirty capital and

clean capital as direct inputs.3 First, theoretical assumptions are used to transform the CES func-

tion into a regression framework, where the relation between the dirty capital-to-output ratio and

the marginal productivity of dirty capital reflects the ES. Second, given challenges in measuring

absolute levels of dirty capital and clean capital, carbon emissions serve as a proxy for dirty capital

and total assets for the combined capital stock.

The overall elasticity of substitution for dirty capital is estimated at approximately 0.3, aligning

with the substitutability between capital and labor in the classical production function (Gechert et

al., 2022). This estimate suggests a production function more complementary than Cobb-Douglas.

Since Van der Beck (2023) highlights a significant increase in sustainable investing after 2012, I

also consider a subsample analysis that starts in 2012. I find that dirty capital has become slightly

more substitutable (with the ES increasing from approximately 0.15 to 0.3), indicating progress

toward an economy with greater technological flexibility.

3Other economic inputs do not affect the estimation strategy, which relies on the partial derivative of output
with respect to dirty capital, depending only on total output and dirty capital. See Appendix B for derivations.
Notably, this model is consistent with the presence of costless adjustable labor as a production input, as labor would
be embedded in firm-level total factor productivity in this case.
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To arrive at the estimation, several assumptions are made along with corresponding robustness

checks. First, total assets are used as a proxy for the sum of dirty capital and clean capital in the

benchmark analysis. As robustness checks, total assets are replaced with physical capital only and

with the sum of physical capital and intangible capital, yielding results that are consistent with the

benchmark. Second, a linear relation between carbon emissions and dirty capital is assumed for sim-

plicity. The estimation of ES does not rely on this specific linear functional form; alternative mathe-

matical derivations for other functional forms lead to the same estimation equation. Third, following

Chirinko and Mallick (2017), firm-level TFP is assumed to be captured by the sum of firm and time

fixed effects, which removes the possibility of firm-specific variation in TFP. As additional robust-

ness checks, the econometric method in Bai (2009) is employed to account for time-varying interac-

tive fixed effects. The resulting estimates of ES are higher than the benchmark results but remain

far from the perfect substitutability implicitly assumed in the literature. Overall, the results suggest

that the current production function is more complementary than the Cobb-Douglas function.

After obtaining the elasticity of substitution, I back out the productivity share of dirty capital,

which should be between zero and one.4 The data-implied share of dirty capital is approximately

50%, which falls well within the theoretical range and validates the model assumption. I also

present heterogeneous estimates of substitutability across ten industries as defined by Fama and

French (1997). Industries that are more R&D intensive, such as the high-tech and health indus-

tries, exhibit lower complementarity of dirty capital. In contrast, traditional industries, such as the

manufacturing and consumer goods industries, demonstrate greater complementarity.

Finally, to capture the more realistic dynamics and implications of climate change, the two-

period model is extended to a dynamic model that examines the effects of carbon emissions on

damage and temperature changes. This model integrates a standard investment-based asset pric-

4Specifically, two explicit assumptions are needed as follows: 1. the ratio of dirty capital to total assets is the
same as the productivity share of dirty capital; and 2. there is a linear relationship between dirty capital and carbon
emissions. Under these assumptions, the productivity share of dirty capital becomes a nonlinear function of the
elasticity of substitution and other observable information. Note that the estimate of the productivity share (but not
of the ES) heavily depends on the specific functional form relating carbon emissions to dirty capital (see Appendix
B).
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ing framework (Zhang, 2005) with a simplified version of the dynamic integrated climate–economy

(DICE) model (Nordhaus and Sztorc, 2013). Pollution and subsequent temperature increases form

a gradual process that can cause irreversible global damage. Because the two-period model cannot

fully capture these progressive and long-term impacts, the dynamic model is developed with an

infinite time horizon.

The economic mechanisms of the dynamic model are as follows. Similar to the two-period model,

the firm maximizes the present value of cash flows while incorporating sustainability preferences

into the projected cash flows and pricing kernel. Unlike the two-period model, sustainability pref-

erences operate through concerns about carbon emissions, which lead to temperature increases and

output damage, as described in Nordhaus and Sztorc (2013). Although the temperature changes

and resulting damages are mild in each period, the cumulative loss is significant. Consequently, the

firm opts for a much lower proportion of dirty capital when the two types of capital are perfectly

substitutable, and when investors’ climate concerns are substantial.

The dynamic model yields two main results. First, heightened investor sustainability demands

related to climate change motivate firms to decrease their use of dirty capital, although this reduc-

tion is limited by the complementarity between clean capital and dirty capital. In the benchmark

analysis, I assume that the two types of capital are equivalent except for climate concerns. With

high sustainability demands, firms opt for as little as 20% dirty capital when it can be perfectly sub-

stituted by clean capital (ultimately, they opt for 0% dirty capital if the sustainability preference is

further strengthened). However, when the capitals are complementary, productivity concerns out-

weigh sustainability demands, leading firms to maintain a more balanced allocation (near 50/50)

despite investor pressures. I examine varying levels of complementarity, setting the elasticity of

substitution from 0.3 to +∞ (perfect substitution). An ES of 5 achieves only half the impact of

sustainable investing under perfect substitution, underscoring the significant friction introduced by

complementarity.5

5The firm might alter complementarity through R&D; however, I treat this parameter as exogenous to avoid
significantly increasing model complexity. Currently, it is unclear whether firms are actively pursuing technological
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Second, the magnitude of the “greenium” depends on the effectiveness of sustainable investing.

I define the greenium as the difference between the one-period marginal expected returns of dirty

and clean investments (dirty minus clean), which quantifies the short-term return that investors

forego to mitigate the cumulative damage of climate change or the difference in the cost of capital.

Here, investment return is defined as the marginal investment benefit divided by the cost. With

higher substitutability, sustainable investing is more effective, prompting the firm to opt for a sig-

nificantly lower level of dirty capital, which is associated with low marginal cost and high marginal

benefit. This gap between benefits and costs drives up the return on dirty investments, resulting

in a large positive greenium. In contrast, if sustainable investing is ineffective at reducing dirty

capital, the greenium becomes close to zero. The greenium resulting from effective sustainable

investing aligns with the findings of other models (Pástor et al., 2021), although it is derived here

from an investment-based asset pricing perspective.6

Overall, my findings underscore the critical role of substitutability between the two types of cap-

ital, alongside the influence of investors’ preferences. For sustainable investing to have a material ef-

fect on firms’ investment in dirty capital, one needs to prioritize technological innovations that make

clean capital a viable substitute for dirty capital. Simply pressuring firms to adopt greener practices

may be ineffective if they are constrained by production requirements. In this sense, my findings are

related to the point that other frictions, such as financial constraints, can counteract the intended

impact of sustainable investing (see Hartzmark and Shue (2022) and Lanteri and Rampini (2023)).

shifts, as sustainability goals have only recently taken center stage. Some firms may simply divest from dirty assets
under investor pressure rather than pursue structural changes. Nonetheless, this is an important question for future
research.

6A positive greenium means that brown projects have a higher cost of capital than green projects. The
current empirical literature on greenium presents mixed evidence and could reflect a world characterized by high
complementarity and other economic forces. In practice, green firms experience higher average realized returns,
which does not contradict a positive greenium, as the average realized return can be a poor proxy for the expected
return in a short sample. Using alternative expected return measures, Yoo (2023) and Eskildsen et al. (2024) find
higher brown expected returns, which is consistent with model predictions. A negative green premium could also arise
from factors outside my model, such as rising ESG fund demand (Van der Beck, 2023) or future growth opportunities
from intangible assets. Even if the greenium is negative, the goal of ESG is to make it positive, and my model
examines the implications of achieving this objective.
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Related Literature

My paper contributes to three strands of literature. First, it adds to the burgeoning literature on

how sustainable investors impact firm value and corporate policies. Sustainable investors demon-

strate preferences for green firms and construct portfolios on the basis of firms’ environmental

sustainability, thereby influencing firms’ cost of equity through the required returns (Choi et al.,

2020; Engle et al., 2020; Krueger et al., 2020; Ilhan et al., 2021; Pástor et al., 2021; Pedersen et al.,

2021; Sautner et al., 2023). More specifically, my work contributes to the carbon premium and

carbon emissions literature (Bolton and Kacperczyk, 2021; Gregory, 2021; Bartram et al., 2022;

Bolton and Kacperczyk, 2023; Huij et al., 2023; Van der Beck, 2023; Zhang, 2024). I assume that

the carbon risk price can be influenced by investors and focus on the implications of this risk price

for firms’ investment decisions and carbon emissions. Previous studies document that sustainable

investors may or may not alter firm behaviors (Heinkel et al., 2001; Li et al., 2020; De Angelis

et al., 2023; Heath et al., 2023). Favilukis et al. (2023) shows that the impact of portfolio mandates

crucially depends on firms’ demand elasticity of capital in a production economy. I demonstrate

that sustainable investors have tangible effects on capital choices if clean capital and dirty capital

are highly substitutable. Furthermore, my paper reveals the limitations of sustainable investors,

emphasizing the importance of capital substitutability in firms’ production processes.

The second contribution of my paper is to the literature on climate finance theories. Much of

the literature in this area has focused on studying the interaction between social welfare and finan-

cial quantities and prices through macrofinance models (Daniel et al., 2016; Bansal et al., 2017;

Donadelli et al., 2019; Barnett et al., 2020; Lemoine, 2021; Van den Bremer and Van der Ploeg,

2021; Barnett, 2023; Hong et al., 2023; Lontzek et al., 2023). Some recent models have examined

the real effects of sustainable investors on firms (Hambel et al., 2020; Campbell and Martin, 2021;

Pástor et al., 2021; Dangl et al., 2023; Lanteri and Rampini, 2023; Bustamante and Zucchi, 2024).

These theories focus primarily on investor-side influences and explore how they can propagate to

firms and the broader economy. In contrast, my model centers on firm-side decisions and the trade-
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off between green and brown inputs in the production function. I emphasize the importance of

technological innovation in capital substitutability, which aligns with the findings of Barnett et al.

(2023b), who demonstrate the value of R&D investments.

Third, my paper contributes to the investment-based asset pricing literature (Zhang, 2005; Liu

et al., 2009; Lin, 2012; Eisfeldt and Papanikolaou, 2013; Frank and Shen, 2016). This body of work

has examined equity value and returns by considering endogenous investment decisions. Previous

papers also highlight the implications of heterogeneous capital and labor sources (Belo et al., 2014;

Belo et al., 2017; Gonçalves et al., 2020; Belo et al., 2022). I extend the standard investment-based

model by incorporating both dirty capital and clean capital. Using an investment-based model

with two types of capital, I highlight how the endogenous tradeoff between capital allocation and

productivity limits the effect of sustainable investment, thereby addressing new questions in climate

finance.

The remainder of this paper is organized as follows: Section 2 employs a two-period model to

illustrate the key economic mechanisms. Section 3 reports the results of the empirical analysis

concerning the substitutability of dirty capital. Section 4 outlines the full dynamic model. Section

5 presents and discusses the quantitative results. Finally, Section 6 provides concluding remarks.

2 Two-Period Model

In this section, I present a two-period model to illustrate key economic intuitions. The two-period

model offers closed-form solutions for optimal investment decisions, enabling explicit descriptions

of determinants for capital allocations.

Before delving into the model, I introduce three assumptions to simplify it without compromis-

ing economic insights. First, I assume full depreciation, meaning that investment I is equivalent

to the next period’s capital level K. Second, the two types of capital, clean KC and dirty KD,

are assumed to be identical except for their contribution to damage, capturing the pure effects of

sustainability preferences. Third, I set the initial economy with KC = KD = 1, implying that the
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share of dirty capital is 50%. The initial wealth today is denoted by W0.

In a two-period model, tomorrow represents the end of the world. Unlike modeling climate risk

as a long-run risk (Giglio et al., 2021b; Giglio et al., 2021a), I incorporate a natural disaster that

causes significant damage in the next period.7 For simplicity, I do not distinguish between pollution

and damage. Since dirty capital causes more pollution, which translates into more damage, I assume

that damage is an increasing function of dirty capital. This assumption is motivated by the increas-

ing frequency and magnitude of natural disasters caused by carbon emissions and global warming

(Cai and Lontzek, 2019). Alternatively, the postdamage profit can be viewed as shareholders’ wel-

fare, which the firm should maximize (Hart and Zingales, 2017). Since profit and damage are inex-

tricably connected for technological reasons, shareholders’ welfare is not equivalent to market value.

The damage function accounts for broad interpretations: cash flow losses due to lower consumer

demand resulting from harmful environmental effects or shareholders’ welfare losses from negative

externalities, as in Hart and Zingales (2017). The economic setting of the damage function aligns

with other standard climate economic models, where damage increases with more pollution and

higher temperature (Nordhaus and Sztorc, 2013; Cai and Lontzek, 2019; Barnett et al., 2020).8 In

these models, production generates more carbon emissions, increasing temperatures, and therefore,

causing more damage. Such realistic dynamics between temperature increase and dirty capital

accumulation will be explored in the full dynamic model in Section 4, with an infinite time horizon.

The timeline of the model is as follows:

t = 0

Observe x0 = z0 = 0

Investment Decisions

with Adjustment Costs

t = 1

Climate disaster hits

Damage & Output
Pricing kernel

M = βe−γ(x1−x0)+θ(z1−z0)

7Long-run climate change has only mild effects each period, which would be negligible in a two-period setting,
thereby blurring the economic mechanisms.

8There is debate about the specific functional form of the damage function. For example, it could be a smooth
function, as used in Nordhaus’s DICE model, or it could incorporate a tipping point and tail risks. However, it
is widely accepted that temperature increases cause more damage. I make a simplifying assumption here, and the
economic insights remain qualitatively the same.
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The production output is given by

Π = (1−D)XΦ (1)

where D represents the damage function, X denotes aggregate productivity, and Φ represents the

constant elasticity of substitution (CES) production function. Specifically, the damage function

increases with the level of dirty capital stock KD:

D = ηZKD (2)

where η denotes the damage intensity, and Z represents a stochastic variable capturing the

uncertainty of realized damage in the next period. The CES production function incorporates

both types of capital:

Φ =
(
(1− α)(KC)

ω + α(KD)
ω
) 1

ω (3)

where α captures the productivity share of dirty capital, and ω represents the substitutability be-

tween clean and dirty technologies. I assume that both capital stocks have the same productivity

share (α = 0.5).

Consider two special cases: When ω = 1, the two types of capital are perfectly substitutable,

meaning that one marginal unit input ofKD can be perfectly substituted by one unit ofKC . Even if

the economy completely eliminatesKD, it can still produce goods by relying solely onKC . However,

when ω = 0, the production function becomes Cobb-Douglas. If the economy completely eliminates

KD, the output will become zero, indicating that the two types of capital are not substitutable.

The pricing kernel captures investors’ preferences for less dirty capital or aversion to pollution

or damage.9 Following the investment-based asset pricing literature, I use an exogenous log-linear

9Investors may be willing to hold claims to clean capital at a lower expected return, while remaining risk-neutral
to damage risk, meaning that the cost of capital wedge between dirty and clean assets is not necessarily risk-based.
I do not take a stance on whether this wedge is due to risk or other factors. Under no-arbitrage conditions, any cost
of capital effect can be represented by a stochastic discount factor (Kozak et al., 2018). Thus, the economic setup is
equivalent whether I model damage as a priced factor or directly impose a wedge between the costs of dirty capital
and those of clean capital.
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pricing kernel.

ln(M) = ln(β)− γ(x1 − x0) + θ(z1 − z0) (4)

where x0 = ln(X0) represents the initial aggregate productivity, and z0 = ln(Z0) denotes the initial

damage level at time t = 0. x1 and z1 are, respectively, the next period realized productivity and

damage shocks. γ and θ measure the price of risk associated with aggregate productivity shocks and

damage shocks, respectively. A higher θ can be interpreted as investors having stronger preferences

for less pollution or damage.

To maintain simplicity, I model the shocks as a binomial tree. The productivity shock x1 is as

follows:

ln(X1) = x1 =

x0 +∆x, Prob = 1
2

x0 −∆x, Prob = 1
2

(5)

and damage shock z1 follows

ln(Z1) = z1 =

z0 +∆z, Prob = 1
2

z0 −∆z, Prob = 1
2

(6)

The specific values of ∆x and ∆z do not change the qualitative results or the economic intuitions.

The investment adjustment cost is

ϕj =
1

2
I2j (7)

where j ∈ {C,D}. The net cash flow is thus

CF0 =W0 − IC − ID − ϕC − ϕD (8)

CF1 = Π1 (9)

where W0 is the firm’s initial wealth. The firm maximizes value

V = max
IC ,ID

CF0 + E[MCF1] (10)
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The first-order conditions are therefore

[IC ] 1 + IC = E
[
M(1−D)X1

∂Φ

∂IC

]
(11)

[ID] 1 + ID = E
[
M(1−D)X1

∂Φ

∂ID

]
︸ ︷︷ ︸

marginal contribution to production

− E[M
∂D

∂ID
X1Φ]︸ ︷︷ ︸

marginal contribution to damage

(12)

To understand the economic intuitions more explicitly, consider two special cases. First, when

ω = 1, the two capital stocks are perfect substitutes for each other, and the first-order conditions

become

1 + IC = E
[
M(1−D)X1 · 0.5] (13)

1 + ID = E
[
M(1−D)X1 · 0.5

]
− E[M

∂D

∂ID
X1Φ] (14)

The wedge between the two types of investments is

IC − ID = E[M
∂D

∂ID
X1Φ] (15)

which is driven purely by the potential damage generated by dirty capital. The greater the po-

tential damage and aversion to it (θ), the less the firm invests in dirty capital. If the damage is

sufficiently severe, the firm will rely solely on clean capital for production.

However, when ω = 0, the production function simplifies to a Cobb-Douglas form. The first-

order conditions thus become

1 + IC = E
[
M(1−D)X1 · 0.5(

KD

KC
)0.5] (16)

1 + ID = E
[
M(1−D)X1 · 0.5(

KC

KD
)0.5

]
− E[M

∂D

∂ID
X1Φ] (17)

If the economy entirely discards dirty capital (ID = KD = 0), it will not be able to produce. In

this case, as shown in equations (16) and (17), the marginal return on dirty capital investment

approaches infinity, whereas the marginal return on clean capital investment falls to zero.10

10Perfect substitutability implies a potentially wide wedge between clean and dirty investment but does not
necessarily mean a zero share of dirty investment. Because the investment adjustment cost is convex, it is less
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Given the optimal capital allocation, a natural question arises: How can different values of

θ be economically interpreted? To provide more explicit economic explanations, I report the

wedge between the expected one-period return of marginal dirty investment and clean investment.

Specifically, following equations (16) and (17), the expected returns on dirty investment and clean

investment are, respectively, as follows:

E[RC ] =
E
[
(1−D)X1 · 0.5(KD

KC
)0.5]

1 + IC
(18)

E[RD] =
E
[
(1−D)X1 · 0.5(KC

KD
)0.5

]
− E[M ∂D

∂ID
X1Φ]

1 + ID
(19)

I define the wedge, E[RD]−E[RC ], as the “greenium.” It quantifies the additional expected return

required by investors for dirty investments, given a climate concern.11

The wedge between clean and dirty investments depends on two factors: marginal production

and marginal damage. When the two types of capital are perfectly substitutable, clean capital can

fully replace the marginal production of dirty capital, so damage and shareholder preferences largely

disincentivize investment in dirty capital. If the potential damage is substantial or if investors place

a very high concern on damage (high θ), the firm can achieve a very low (or even zero) share of dirty

capital. However, when the two types of capital are complementary, production concerns dominate

the damage and investor preference channels in firm investment decisions, making it challenging to

attain a very low level of dirty capital.

Figure 1 illustrates the optimal ratio of dirty capital, KD/(KC +KD), across varying prices of

damage shock, θ, under two scenarios of dirty capital substitutability ω. As θ increases, investor

aversion to pollution risk intensifies, leading to a reduced share of dirty capital in the economy.

This effect is concave due to the exponential form of the stochastic discount factor (SDF), with the

marginal impact becoming more pronounced as θ increases.

costly to invest one dollar in each form of capital than to invest two dollars in clean capital.
11These investment returns can also be expressed in terms of the quantity and price of risk. From the first-

order conditions for dirty and clean investments: 1 = E[MRj ], where j ∈ {C,D}. Following Cochrane (2009),
E[Rj ] = Rf + βjλm, where βj = −Cov(Rj ,M)/V ar(M) represents the quantity of risk, and λm = V ar(M)/E(M)
denotes the price of risk.
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When the two types of capital are perfect substitutes (ω = 1), the firm accumulates a signifi-

cantly lower share of dirty capital, achieving a minimal share (i.e., 10%) when θ is sufficiently high.

However, with a Cobb-Douglas production function (ω = 0), the influence of θ on the share of dirty

capital is far more constrained.

The greenium for different values of θ is presented in Figure 2. The economic insights of the

“greenium” are straightforward. When the capital stock level is low, investment adjustment costs

are also low due to the convexity of the adjustment function, meaning that the marginal cost of

investment is low. Additionally, at low capital levels, the marginal benefit of investment is high

(for Cobb-Douglas) or constant (for perfect substitution). Thus, the expected return, marginal

benefit divided by marginal cost, on dirty capital is high, suggesting that firms can achieve higher

returns by investing more in low-level capital. However, climate concerns lead investors to forgo

these potential high returns. The greater the climate risk aversion is, the more returns they are

willing to sacrifice, which drives the greenium patterns shown in Figure 2. This aligns with the high

expected dirty (brown) premium seen in other models addressing climate change concerns (Pástor

et al., 2021), albeit from an investment-based asset pricing perspective.

In summary, this section elucidates key economic intuitions through a simple two-period model.

The model’s closed-form solutions explicitly reveal the economic mechanisms governing optimal

capital allocation decisions. The degree of substitutability between clean capital and dirty capital

plays a pivotal role in these decisions. In a world characterized by a Cobb-Douglas production

function, production concerns offset climate concerns. Consequently, the economy cannot achieve a

very low level of dirty capital without substantially reducing output. Conversely, in a world where

the two types of capital are perfect substitutes, production concerns are negligible, and climate

concerns dominate. In this scenario, the economy can become as green as investors desire.
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3 Empirical Analysis

The results from the two-period model highlight the importance of the substitution between dirty

capital and clean capital. However, how high is the elasticity of substitution in the data? This

study is the first to estimate the substitutability of dirty capital. Previous papers primarily fo-

cus on the elasticity of substitution between capital and labor, as capital and labor are classical

production function inputs with relatively straightforward empirical measures. In this empirical

literature, the substitutability parameter is often rewritten as ω = (ν − 1)/ν to simplify estimation.

For capital and labor, Chirinko et al. (2011) and Chirinko and Mallick (2017) estimate an elasticity

of ν = 0.4 (ω = −1.5). Similarly, Gechert et al. (2022) conducts a meta-analysis and finds an

average elasticity of ν = 0.3 (ω = −2.33), conditional on the absence of publication bias. My

estimates of the elasticity between dirty capital and clean capital suggest a similar magnitude to

the elasticity between capital and labor.

In this section, I empirically estimate the value of ω (or ν) to demonstrate that the current

economy is still far from achieving perfect substitution. The section begins with a detailed expla-

nation of the empirical strategy, followed by a description of the dataset, and concludes with a

discussion of the results.

3.1 Empirical Strategy

The empirical strategy combines the methods in Chirinko et al. (2011) and Chirinko and Mallick

(2017) with the model presented in Section 2. Recall the CES production function in equation (3)

Φit =
(
(1− α)(KC,it)

ω + α(KD,it)
ω) 1

ω

Consistent with the previous literature and for simplicity, I rewrite ω = (ν − 1)/ν, where ν repre-

sents the elasticity of substitution. This functional form is common in empirical studies estimating

the degree of substitution within the CES function, providing a regression equation that directly

links the regression coefficient to the degree of substitution. Figure 3 illustrates the relationship
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between ω and ν, showing a positive correlation and similar qualitative implications.

Following Chirinko et al. (2011) and Chirinko and Mallick (2017), a firm-specific productivity,

Ait, is added. Now, firm i has an output of

Yit = Ait
(
(1− α)(KC,it)

ν−1
ν + α(KD,it)

ν−1
ν
) ν

ν−1
(20)

Take the partial derivative with respect to KD
it

∂Yit
∂KD,it

= αA
ν−1
ν

it Y
1
ν
it KD,it

− 1
ν (21)

Rearranging the equation12

KD,it

Yit
= ανAν−1

it (
∂Yit
∂KD,it

)−ν (22)

This equation does not rely on specific inputs in the production function. Although there may be

other separately modeled inputs, such as labor and intangible capital, the equation above does not

change because everything is included in the total output Yit (see Appendix B for more details).

Since carbon emissions are directly observable, I use them as a proxy for the dirty capital stock.

Git = ηKD,it (23)

where Git represents carbon emissions, I assume a linear relationship between dirty capital stock

and carbon emissions for simplicity and to remain consistent with my dynamic model assumption.

This assumption aligns with the functional form in Barnett et al. (2023a) and Hong et al. (2023).

The reasoning is that carbon emissions are a linear function of output (Nordhaus and Sztorc, 2013),

and output can be assumed to be a linear function of capital, resulting in a linear relationship be-

tween carbon emissions and capital. This specific functional form does not affect the estimation

strategy for ν (see Appendix B for more details), but it will affect the estimates of α. I plug the

12I rearrange the equation to place the partial derivative, ∂Yit/∂KD,it, on the right-hand side because the firm-
specific TFP is correlated with the dirty capital-to-output ratio, KD,it/Yit. In contrast, the partial derivative, which
is a function of ∂ lnYit/∂ lnKD,it, does not depend on the firm-specific TFP by definition of the polynomial function
used to approximate the nonlinear function, lnYit.
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equation above into equation (22), and obtain

Git
Yit

= ανη1−νAν−1
it (

∂Yit
∂Git

)−ν (24)

Following Chirinko and Mallick (2017), the firm-specific productivity has the following functional

form:

Aν−1
it = eui+ut+uit (25)

The portion of the firm TFP that is allowed to correlate with other firm variables is represented

by the sum of firm and time fixed effects. While this simplified assumption could be overly restric-

tive and introduce bias into the estimates, a robustness check using the method proposed in Bai

(2009) addresses this concern by incorporating time-varying interactive fixed effects. The approach

leverages principal component analysis (PCA) to decompose the interactive fixed effects into time-

varying factors and firm-specific loadings. The results are presented in Table D.6. Take the log on

both sides and rearrange

ln(
Git
Yit

) ≜ a− ν · ln( ∂Yit
∂Git

) + ui + ut + uit (26)

where a = ν · ln(α) + (1− ν) · ln(η) is the intercept. Taking the first difference eliminates the firm

fixed effect

∆ ln(
Git
Yit

) = −ν ·∆ ln(
∂Yit
∂Git

) + ut + uit (27)

Equation (26) includes both firm and year fixed effects, whereas equation (27) includes only year

fixed effects. The emission-to-output ratio, Git/Yit, is straightforward to calculate. However,

calculating the firm-level marginal contribution of emissions to output, ∂Yit/∂Git, is challenging.

Therefore, I estimate it via sector-year regressions. Output Y is a nonlinear function of dirty cap-

ital, KD, and clean capital, KC , by definition. I use total assets, AT , as a proxy for total capital,

KD +KC , and carbon emissions, G, as a proxy for KD (an implication from equation (21)). Thus,

for each sector j, I assume that output Y is a nonlinear function of emissions G and total assets
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AT . I use cross-sectional firm data to estimate the nonlinear function within each sector. I then

apply the sector-year-specific coefficients to calculate the firm-level ∂Yit/∂Git. Motivated by Gala

et al. (2022), the nonlinear function can be approximated by a polynomial function

lnYit = cj0,t+cj1,t·lnGit+cj2,t·(lnGit)2+cj3,t·lnATit+cj4,t·(lnATit)2+cj5,t·lnGit×lnATit+ϵit (28)

where ATit is the total assets. The equation is estimated for each combination of sector j and time

t, with coefficients that are specific for each sector-year combination.13 Because the levels of output

and emissions data are highly right skewed, the logarithmic form provides a more stable relation-

ship. Using total assets as the primary independent variable is appropriate due to the functional

form of the CES production function, where total output depends on dirty capital and clean capital

stock. Total assets are most directly related to total capital stock.14 Taking the partial derivative

of (28), I obtain

∂ lnYit
∂ lnGit

= cj1,t + 2 · cj2,t · lnGit + cj5,t · lnATit (29)

The partial derivative of the logarithm can be easily converted back to the original partial derivative

in levels: ∂Yit/∂Git = (∂ lnYit/∂ lnGit) · (Yit/Git). Equations (26) and (27) are used to estimate ν.

The economic meaning of equation (26) is as follows: the marginal productivity of emissions

to total output, ∂Y /∂G, represents how productive carbon emissions are, indicating how much

total output can be generated per marginal unit of carbon emissions. The specific relation between

carbon emission intensity and the marginal productivity of carbon emissions can be quantified

by the elasticity of substitution, ν, due to the functional form of the CES production function.

Carbon emission intensity and the marginal productivity of carbon emissions are negatively corre-

lated, reflecting diminishing returns to scale. If they are positively correlated, the firm continuously

increases its carbon emission intensity as marginal productivity rises, without limits.

13By definition, the output Yit is a function of firm-specific productivity, Ait, which depends on firm and time fixed
effects. To estimate the polynomial function, I use sector and year combinations, which capture the year fixed effect.
Because the variation within a sector comes from firm-level variables, I cannot include firm fixed effects.

14The results are robust if I replace total assets with physical capital (PPEGT or PPENT from COMPUSTAT,)
or the sum of PPEGT and intangible capital. See Table D.3, Table D.4, and Table D.5 for more details.
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3.2 Data

The data used for the empirical analysis are merged from the S&P Trucost Environmental and

Compustat Fundamentals Annual (North America and Global) datasets from WRDS. The Trucost

dataset covers global firm-level carbon emissions in tons of carbon dioxide equivalent (tCO2e) at

an annual frequency, from 2002 to 2022. The Trucost data are merged with Compustat data via

GVKEY and year. The sample is restricted to firms with positive total assets, carbon emissions,

and total revenue. In the data, total revenue represents total output Y in the model. More detailed

descriptions of the data variables are provided in Table D.1.

I study Scope 1, 2, and 3 carbon emissions. Scope 1 GHG emissions originate from sources

owned or controlled by the company. Scope 2 GHG emissions result from the consumption of

purchased electricity, heat, or steam by the company. Scope 3 GHG emissions (upstream and

downstream) are indirect carbon emissions from other activities not covered in Scope 2.

The nonlinear function (28) is estimated at the 2-, 3-, and 4-digit SIC levels. To mitigate the

impact of large firms, the regression is weighted by the inverse of the logarithm of total assets.

Since there are six independent variables, for each combination of sector and year, samples with

fewer than six observations are excluded. The corresponding control variables and estimates are

winsorized at the 1st and 99th percentiles of the distribution.

3.3 Sample and Summary Statistics

The matched sample between Trucost and Compustat covers both developed and emerging markets

at an annual frequency. Because Trucost did not update data for all countries in 2023, I use 2022

as the sample ending year. I drop countries with fewer than 20 observations and exclude financial

firms (SIC codes between 6000 and 6999).15 Table 1 reports the number of observations, start year,

end year, and averages of the key variables used in the empirical analysis. The sample predomi-

15Financial firms might rely on polluting physical capital, such as buildings that use electricity. However, their
production functions can fundamentally differ from those of other industries. I report estimates of ν with financial
firms in Table D.2, which are quantitatively similar to estimates without financial firms but slightly higher overall.
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nantly comprises developed markets, accounting for approximately 90% of the total observations.

The leading countries are the U.S. (75%), Canada (5%), China (3%), and the United Kingdom

(2%). The United States comprises the majority of the sample. I include the average log ratios

of total revenue, Scope 1 carbon emissions, Scope 2 carbon emissions, and total assets. These are

the critical variables used in estimating the marginal productivity of carbon emissions and dirty

capital substitutability, ν.

Table 2 presents key summary statistics for firm-level carbon measures and fundamentals. Car-

bon emission measures in the U.S. do not differ substantially from those in the global sample. In

the U.S. sample, across the three scopes of carbon emissions, Scope 3 has the highest intensity

(4.88) compared with Scope 1 (2.28) and Scope 2 (2.56). Carbon intensity is measured by the

logarithm of carbon emissions scaled by total revenue. Scope 1 has the highest standard deviation

(2.02) compared with Scope 2 (1.36) and Scope 3 (1.36). For the logarithm of the carbon emission

levels, Scope 3 has the highest value (11.52), which is higher than those of Scope 1 (8.92) and Scope

2 (9.20). Like carbon intensity, Scope 1 has the highest standard deviation (3.09), whereas Scope

2 (2.64) and Scope 3 (2.69) have similar standard deviations.

Total revenue and total assets are important components in the empirical analysis. In the U.S.

sample, the average log of total revenue (in millions) is 6.66, and the average log of total assets

(in millions) is 7.83. The summary statistics of the estimated marginal productivity of carbon

emissions, ∂Y /∂G, are calculated via Scope 1 carbon emissions and industry proxies on the basis

of 3-digit SIC codes. I also include the ratio of carbon emissions to total assets, as this ratio is used

to back out the model-implied α in later analysis. The logarithm of the Scope 3 emissions-to-total-

asset ratio is the highest (3.70), followed by Scope 2 (1.37) and Scope 1 (1.10) in the U.S. sample.

3.4 Empirical Results

The baseline empirical analysis follows regression equations (26) and (27). Equation (26) regresses

the logarithm of carbon emissions scaled by total revenue, ln(G/Y ), on the logarithm of the marginal
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productivity of carbon emissions, ln(∂Y /∂G). As suggested by the model, firm and year fixed ef-

fects are included. Equation (27) employs the first-difference estimator based on equation (26),

which eliminates the firm fixed effect and includes only the year fixed effect.

Table 3 panels A, B, and C use Scope 1, 2, and 3 carbon emissions respectively, as proxies for G.

Within each carbon emission proxy, I estimate the marginal productivity of carbon emissions using

2-, 3-, and 4-digit SIC codes as the sector classifications. For example, equation (28) is estimated by

industries classified by 4-digit SIC codes. After obtaining the industry-level coefficients, I use them

to estimate firm-level ∂Y /∂G before the final pooled firm-level regressions. Because industries with

fewer than 6 observations per industry-year are filtered out, the number of observations is lower in

regressions using 4-digit SIC codes for industry classification.

Overall, the estimates suggest a high level of complementarity for dirty capital. Table 3 presents

the average estimates of ν. In Panel A, Scope 1 carbon emissions suggest that ν is between 0.146 and

0.350, depending on industry classifications. The 2-digit SIC code yields the highest ν, with 0.350

using equation (26) and 0.212 using equation (27). The 4-digit SIC code yields a relatively lower ν,

with 0.244 using equation (26) and 0.146 using equation (27). In Panel B, Scope 2 carbon emissions

suggest similar levels of ν as those using Scope 1, with the highest at 0.398 for the 2-digit SIC code

and the lowest at 0.153 for the 4-digit SIC code. Panel C, Scope 3, indicates an overall higher level

of ν than Scopes 1 and 2 do, with the highest ν at 0.458 for the 2-digit SIC code and the lowest

at 0.245 for the 4-digit SIC code. First difference estimators indicate an overall lower level of ν.16

Different specifications yield varying estimates of ν. However, the message is consistent across

all specifications: dirty capital is highly complementary. Recall from Figure 3 that the production

function is Cobb-Douglas if ν = 1. The higher the ν, the more substitutable dirty capital and clean

capital are. To achieve perfect substitution, ν would need to approach +∞. In Table 3, the highest

ν is 0.458, which is obtained when Scope 3 and the 2-digit SIC code are used to proxy for carbon

16The ES ν is heterogeneous across industries because of the different technologies used in each industry. An
alternative way to estimate the average ν is to calculate it at the industry level and then average it across industries.
The results are qualitatively the same, as shown in Table D.8.
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emissions and industry. This estimate is still substantially lower than one, suggesting even higher

complementarity than the Cobb-Douglas production function.

One caveat of the empirical framework is that using separable firm and time fixed effects to

capture firm-specific TFP could bias the estimates of ν. Therefore, I use the methodology proposed

in Bai (2009) to capture time-varying interactive fixed effects via PCA. The number of principal

components may affect the estimates, so I report results with 1, 5, and 10 factors. The results are

shown in Table D.6. Because the fixed effects are interactive between firm and time, I cannot use

the first-difference regression equation (27), so I focus on the results from equation (26). Compared

with the benchmark results, the estimates are overall higher, ranging from 0.450 to 0.729, depend-

ing on industry and carbon emission specifications. These results indeed indicate potential bias

from the original estimation strategy with separable fixed effects. However, the results still suggest

a more complementary production function than a Cobb-Douglas function.

The dependence on dirty capital in the overall production function can vary over time. Van der

Beck (2023) suggests the emergence of sustainable investors after 2012, which is also the midpoint

of my data period. Therefore, I split the sample using 2012 as the threshold and examine whether

the elasticity of dirty capital changes over time.17

Although clean capital and dirty capital remain highly complementary both before and after

2012, the elasticity of dirty capital is greater in the later period. This result is qualitatively con-

sistent across different specifications. Table 4 presents the subsample estimates. For simplicity, I

report only the results for Scope 1 and Scope 2 with industry classifications using 3- and 4-digit

SIC codes. The results for the 2-digit SIC code and Scope 3 are qualitatively similar.

Following equation (26), Scope 1 carbon emissions and the 3-digit SIC industry classification

suggest that ν increases from 0.143 to 0.289, and the 4-digit SIC suggests an increase from 0.119 to

0.270. Scope 2 and 3-digit SIC indicate that ν increases from 0.260 to 0.318, whereas the 4-digit SIC

suggests an increase from 0.279 to 0.293. The first-difference estimators produce an overall lower

17An alternative approach is to split the sample in 2016, the year of the Paris Agreement. The results are
qualitatively similar, as shown in Table D.9.
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ν, but the increase before and after 2012 is consistent with the original estimators. These results

show a positive trend toward transitioning to clean technologies. To statistically test the difference

between subsample estimates of ν before and after 2012, I report the z statistics and p-values for the

difference between subsample estimates. For most specifications, there is a statistically significant

increase in ν after 2012.

The model has broader implications beyond the elasticity parameter. To support the theoretical

framework, I calculate the implied α on the basis of empirical estimates. However, additional

assumptions are required to derive α, including the specific functional form between carbon

emissions and dirty capital, as well as the relationship between α and η. Recall that in equation

(26), the intercept a can be decomposed as a = ν · ln(α) + (1 − ν) · ln(η). If we assume that

the productivity share of dirty capital, α, is the same as its proportion in total assets, KD/AT ,

then α can be calculated.18 Given that G = ηKD, we have α = KD/AT = (G/η)/AT . Plugging

everything in, I get

ln(α) =
a− (1− ν) ln(G/AT )

2ν − 1
(30)

Table 5 presents the results under various carbon emission and industry specifications. For

simplicity, I focus on Scope 1 and Scope 2 emissions with 3- and 4-digit SIC classifications. The

average ln(G/AT ) is used to derive α. The intercept estimates, a, and elasticity estimates, ν, are

taken from Table 3 with matching specifications.

The implied α falls within the range of zero to one, which is consistent with the model assump-

tion. The implied α is approximately 50%, indicating that, on average, 50% of assets are dirty

capital, or that dirty capital contributes to 50% of total production. The estimate varies slightly

across specifications: Scope 2 emissions and the 3-digit SIC industry classification produce the

highest α at 55%, whereas Scope 2 and the 4-digit SIC yield the lowest α at 42%.

18The proportion of dirty capital relative to total assets may differ from its contribution share in total productivity
if productivity efficiency is not exactly one. Here, I make a simplified assumption to uniquely derive α.
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Finally, I split the sample by industry and estimate the heterogeneous elasticity parameter

within each industry. I follow Fama and French’s definition of ten industries, using the 4-digit SIC

codes to divide the sample.19 Table 6 presents the results across different specifications, focusing

on Scope 1 and 2 emissions and 3- and 4-digit SIC industry classifications. Similar to the results

in Table 3, the first-difference estimator generally produces a lower ν. The results are reasonably

consistent across different specifications.

Compared with other industries, the high-tech, utilities, and health industries have relatively

greater elasticity of dirty capital. For example, when Scope 1 emissions and the 3-digit SIC classifi-

cation are used, the elasticity of the high-tech industry is 0.418, which is significantly greater than

the average across industries of 0.277. The high ν of the high-tech and health industries could be

because R&D- and intangible-intensive industries rely less on dirty capital or have a better chance

of finding substitutes for it. The high ν in the utilities industry could result from the transition to

renewable energy, as renewable energy can perfectly substitute for polluting energy when generating

electricity.

In contrast, the consumer goods (durables and nondurables), manufacturing, telecom, and

shops industries have relatively lower elasticity of dirty capital. These are traditional industries

with limited room for innovations in their production functions and are also less active in finding

replacements for existing dirty technologies. This may be due to lower R&D investments or a lack

of affordable and viable alternatives. For example, the manufacturing industry relies on long equip-

ment lifespans, making it costly to transition to clean technologies before the end of their useful life.

In summary, this section proposes a strategy to estimate the elasticity of dirty capital and

empirically explores both overall and heterogeneous elasticity parameters. Since measuring the

absolute levels of dirty capital and clean capital is challenging, I rely on a method that maps the

elasticity parameter into a regression-based framework and uses observed carbon emission and ac-

counting data for estimation. The results suggest that dirty capital and clean capital are highly

19For more details, see Kenneth French’s data library.
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complementary, although they have become less complementary in recent years, implying a transi-

tion to a world with better technology flexibility. Additionally, dirty capital is less complementary

in R&D-intensive industries than in traditional industries.

4 The Quantitative Model

The two-period model and empirical results highlight the importance of the substitutability between

dirty capital and clean capital, as well as the fact that dirty capital remains highly complementary.

In this section, I propose a more realistic dynamic model that combines elements of the classical

investment-based model with an exogenous log-linear SDF (Zhang, 2005) and standard elements

from the dynamic integrated climate economy (DICE) model (Nordhaus and Sztorc, 2013; Cai

and Lontzek, 2019). The model incorporates climate concerns into the pricing kernel, capturing

investors’ worries or preferences regarding climate change. Unlike the two-period model, this model

uses a more realistic representation of temperature change as a proxy for climate concerns (Nord-

haus and Sztorc, 2013; Balvers et al., 2017; Bansal et al., 2017; Hugon and Law, 2019). Investors’

preferences regarding climate change are captured by the positive price of a carbon emission shock

in the pricing kernel, as a positive carbon emission shock translates into a greater temperature

increase and greater damage to total output. Firms make optimal dirty and clean investment

decisions in response to the exogenous pricing kernel. Time is discrete and infinite.

4.1 The Firm

As in the DICE model (Nordhaus and Sztorc, 2013), the firm’s total output is

Πt = (1−Dt)XtΦt (31)

Similar to Section 2, Dt is the damage function, Xt represents aggregate productivity, and Φt is

the CES production function, with the following functional form:

Φt =
(
(1− α)(KC,t)

ν−1
ν + α(KD,t)

ν−1
ν
)µ· ν

ν−1
(32)
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where ν governs the substitutability between clean capital and dirty capital, and µ governs the

degree of homogeneity of the production function. KC and KD denote clean capital and dirty

capital, respectively. I assume that the degree of substitution, ν, is fixed and exogenous to the

firm. In reality, firms can increase R&D investment to develop new technologies, reducing the

complementarity between dirty capital and clean capital. In this case, ν would be an endogenous

decision variable rather than an exogenous parameter. I take a simplified approach because endog-

enizing innovation would substantially increase model complexity. Because R&D takes a long time

to fundamentally change a firm’s technology, it is reasonable to assume an exogenous production

function with respect to the degree of complementarity. That said, this could be an interesting

direction for future research.

I follow the climate economics literature in introducing a damage function for total output. This

damage function can be interpreted as either real damage to total output due to the increasing

frequency and magnitude of natural disasters caused by carbon emissions and global warming

(Cai and Lontzek, 2019) or as shareholders’ welfare loss from negative externalities, as in Hart

and Zingales (2017).20 As in previous studies, the damage increases with increasing temperature

compared with preindustrial levels to capture the harmful consequences of global warming.21

Temperature rises further if the firm generates more carbon emissions. Unlike previous models, I

consider two types of capital, dirty and clean, to study the effect of substitutability between them.

Since clean capital does not produce pollution, carbon emissions depend solely on dirty capital.

20If global warming passes certain thresholds, the climate system may enter an irreversible state with significantly
more severe disasters. According to the Federal Emergency Management Agency (FEMA), the most frequent natural
disasters are fires, severe storms, and floods, all of which are directly linked to global warming. Alternatively, the
damage can be seen as a negative externality internalized in shareholder welfare. As in Hart and Zingales, 2017, the
firm should maximize welfare rather than market value if profit and damage are inseparable, especially when firms
can pollute but individuals cannot offset pollution by themselves.

21For example, in Cai and Lontzek (2019): It is recognized that temperature increases may cause substantial,
irreversible damage to the climate. Some studies use the possibility of severe damage caused by low-probability
catastrophic events to advocate for aggressive mitigation policies. Moreover, the IAM (Integrated Assessment
Model) literature has recently emphasized climate tipping points, which refer to “a critical threshold at which a tiny
perturbation can qualitatively alter the state or development of the climate system.” Examples of tipping processes
include the irreversible melting of the Greenland ice sheet, the collapse of the West Antarctic ice sheet, and the
weakening of the Atlantic thermohaline circulation.
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The specific functional form of the damage is

Dt = 1− 1

1 + a1∆Tt + a2∆T 2
t

(33)

in which ∆Tt is the temperature at time t relative to its preindustrial level. This is a classical

functional form for damage, following Nordhaus and Sztorc (2013) and Nordhaus (2014). Capital

allocation is standard, and investment adjustment is costly:

Kj,t+1 = (1− δj)Kj,t + Ij,t (34)

ψj(Ij,t,Kj,t) =
ϕjI2j,t
2Kj,t

(35)

where j ∈ {C,D}, Ij ≥ 0. ϕj captures the adjustment cost. The firm’s production generates CO2.

The carbon (greenhouse gas) emission function is

Gt = ηKD,tZt (36)

where η represents the intensity of emissions, and Zt captures the uncertainty of emissions. I

introduce a shock to carbon emissions to capture investors’ preferences for fewer emissions in the

pricing kernel. The modeling strategy is similar to the inclusion of an aggregate productivity shock.

A positive carbon emission shock is considered bad news by investors, who, therefore, impose a

positive price on the carbon emission shock. A higher positive price on the emission shock indicates

stronger investor aversion to increased carbon emissions. Following the approach of Matthews et al.

(2009) and Barnett et al. (2020), I model temperature increases as proportional to carbon emissions.

Specifically,

∆Tt+1 = ∆Tt + λGt (37)

The aggregate productivity, xt = ln(Xt), follows an AR(1) process

xt+1 = (1− ρx)x̄+ ρxxt + σxϵ
x
t+1 (38)
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Similarly, the firm’s emission shock, zt = ln(Zt), follows an AR(1) process

zt+1 = (1− ρz)z̄ + ρzzt + σzϵ
z
t+1 (39)

where ρx and ρz capture the persistence of the shock, and x̄ and z̄ are unconditional means. ϵxt+1

and ϵzt+1 are uncorrelated independently and identically distributed (i.i.d.) random variables that

follow a standard normal distribution. σx and σz are the standard deviations of the i.i.d. shocks.

The contemporaneous cash flow is therefore

CFt = Πt − τDGt − It −Ψt (40)

in which total investment is denoted as It = IC,t + ID,t, and the total investment adjustment

cost is Ψt = ψCt + ψDt . τD represents the carbon tax charged proportionally to total emissions.

Because the carbon tax usually captures the social welfare loss from carbon emissions, it enters

shareholders’ welfare value and the firm’s objective function if the firm maximizes shareholders’

welfare, as in Hart and Zingales (2017).22 Introducing the carbon tax allows me to explore how

capital substitutability interacts with carbon tax policies. Additionally, as more countries start

to implement carbon taxes, this setting is consistent with real-world practice. Taking the pricing

kernel as given, the firm’s Bellman equation is as follows:

V (Xt,KC,t,KD,t,∆Tt, Zt) = max
KC,t+1,KD,t+1

{
CFt + E

[
Mt+1V (Xt+1,KC,t+1,KD,t+1,∆Tt+1, Zt+1)

]}
(41)

subject to dirty capital and clean capital accumulation

Similar to the two-period model, the greenium is defined as the wedge between the expected

22I opt for a reduced-form approach to model the carbon tax and assume it is exogenous for the firm. In papers
focusing on determining the optimal carbon tax, it is typically defined as the “social cost of carbon,” which represents
the social welfare loss from carbon emissions (Weitzman, 2014; Bansal et al., 2017; Cai and Lontzek, 2019; Lemoine,
2021; Olijslagers and van Wijnbergen, 2024).
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one-period marginal returns on dirty and clean investments, Et[R
D
t+1]− Et[R

C
t+1]. Specifically,

Et[R
C
t+1] =

E[ ∂Vt+1

∂KC,t+1
]

1 + ∂ψC
t

∂IC,t

(42)

Et[R
D
t+1] =

E[ ∂Vt+1

∂KD,t+1
]

1 + ∂ψD
t

∂ID,t︸ ︷︷ ︸
marginal contribution to V

+
E[ ∂Vt+1

∂∆Tt+1
× ∂∆Tt+1

∂KD,t+1
]

1 + ∂ψD
t

∂ID,t︸ ︷︷ ︸
marginal contribution to ∆T

(43)

The returns can be decomposed into two channels: firm value and temperature change. Both

expected returns rely on the marginal investment contribution to firm value. Low investment

incurs low adjustment costs but high marginal benefits, leading to high expected returns. However,

unlike clean investment, the return on dirty investment also depends on its effects on climate change.

High dirty investment leads to more temperature increases, thereby generating more damage to

the total output and lowering firm value. Because temperature change is a gradual process and its

impact is mild each period, the first channel typically dominates the second channel when dirty

investment is very low, resulting in a positive greenium.

4.2 The Pricing Kernel

The exogenous log-linear SDF, or pricing kernel, has the following form:

lnMt = lnβ − γ(xt+1 − xt) + θ(zt+1 − z̄) (44)

where β is the time discount factor, γ is the aggregate risk aversion, and θ is the emission aversion.

To better understand the economic intuition, consider three states of emissions

z =


zL, Low emission state

z̄, Normal state

zH , High emission state

(45)

Because a positive emission shock is bad news for the firm, it should correlate positively with

Mt. Unlike aggregate productivity shocks, where the price of risk is typically tied to the growth

of aggregate productivity, I assume that the investor is concerned with deviations in emissions
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from the unconditional mean (the normal state). The rationale is as follows: suppose that we are

currently in a high emission state and that tomorrow’s emissions are also expected to be high.

An investor focused solely on the growth of emissions would view this as neutral news since emis-

sions are not increasing. However, in reality, more pollution is always undesirable, and investors

continuously seek to mitigate it.

Similar to the economic interpretation of γ as the price of aggregate risk, θ represents the price

of emission risk. A higher θ indicates that investors place a higher price on emission risk, or that

they are more averse toward emissions. Consequently, we should expect the firm to choose a smaller

portion of dirty capital as θ increases.

The economic intuitions remain consistent with those of the two-period model. As temperature

increases, it inflicts more damage on output, thereby decreasing firm value. Because temperature

increases are driven by emissions and dirty capital stock, the firm opts to accumulate more clean

capital when θ is high. However, the optimal allocation depends on the substitutability between

the two types of capital. When they exhibit high complementarity, the firm cannot produce any-

thing without dirty capital. Consequently, production concerns are nonnegligible, even if emission

aversion is very strong. Conversely, if the two types of capital are perfectly substitutable, climate

change concerns dominate. In this case, the firm can choose a very low share of dirty capital if

emission aversion is sufficiently strong.

In summary, in this section, I introduce a dynamic model that integrates carbon emission risk

and climate change to analyze firms’ endogenous decisions regarding clean and dirty investments.

The presence of emission risk and climate change concerns tends to reduce dirty investments. How-

ever, the complementarity in production offsets these effects. Consequently, lower levels of dirty

capital result in a positive greenium.
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5 Quantitative Results

In this section, I begin by reporting parameter values and discussing my calibration strategies.

Next, I present the quantitative results derived from the dynamic model and comparative statics.

5.1 Calibration

The model is solved and simulated at a quarterly frequency over 100 years. To illustrate the

benchmark results, I maintain uniform characteristics for both clean capital and dirty capital, ex-

cept climate change and the cost of capital channels. Specifically, both types of capital contribute

equally to production, have the same depreciation rate, and entail the same adjustment costs. How-

ever, dirty capital diverges by generating carbon emissions and temperature changes and incurring

negative cash flow shocks due to carbon taxes.

During the model calibration process, I pursue two primary goals: first, to maintain the average

temperature increase between 1.5◦C and 2◦C; second, to keep the level of aggregate risk, measured

by the equity premium, approximately 8% annually. Using the calibrated model, I examine the

implications for firms’ capital allocations. I adjust the substitution parameter in the CES produc-

tion function to study the impact of capital substitutability. Simultaneously, I explore the effects

of investors’ climate concerns by varying the price of carbon emission risk.

Table 7 reports the parameter values and their meanings. The subjective discount factor,

β = 0.99, is chosen on the basis of the literature. The parameter values governing climate change

and the damage function are calibrated to generate a reasonable temperature change path. Set-

ting values too high for the damage function coefficients, a1 and a2, results in excessively negative

output shocks, making it difficult to invest in both capitals. Consequently, the linear coefficient a1

is set to zero following previous papers, whereas the quadratic coefficient a2 is calibrated to 0.08.

Additionally, parameters governing the contribution of emissions to temperature change, λ = 0.05

and η = 0.01, are selected to achieve a temperature increase of around 1.5◦C. Setting λ and η too

high results in unrealistically high temperature increases.
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The benchmark carbon tax rate τD is set to zero because, in the U.S., most states do not have

a carbon tax. I explore the implications of adding a carbon tax in the comparative statics section.

The productivity share of dirty capital α, depreciation rates δ, and adjustment costs ϕ are chosen

to maintain equivalence between the two types of capital. I follow previous studies to set the values

of depreciation rates, while adjustment cost values are set to ensure stable capital levels within the

simulation grid boundaries.

The persistence ρx = 0.9 and volatility σx = 0.03 of the aggregate productivity shock are

comparable to those in Belo et al. (2023). The unconditional mean x̄ = −2.6 is calibrated in con-

junction with adjustment costs to maintain stable capital levels in simulations. The unconditional

mean of the emission shock z̄ is set to zero so that, on average, the shock has no effect, which

is consistent with models featuring only constant emission intensity. Similarly, to ensure minimal

average effects, I choose a relatively small standard deviation of the emission shock σz = 0.005 and

an arbitrary value for its persistence ρz = 0.5.

5.2 Benchmark Results

Similar to the section on the two-period model, I focus on the effects on optimal capital allocation

and greenium, considering different levels of emission aversion θ and production substitutability ν.

The simulation begins with both capitals at the same level and a temperature change of ∆T = 1.

The ratio of dirty capital is defined as KD/(KC+KD). The economy is simulated for 100 years (400

quarters), independently for 1000 times. To calculate the variables of interest, the first 10 years of

the simulation are excluded, and averages are calculated for the remaining simulation period.

I examine the effects on the ratio of dirty capital and greenium by maintaining a constant equity

premium. Specifically, for each value of θ, I choose the optimal γ that generates an annualized eq-

uity premium closest to 8%. Different optimal ratios of dirty capital in the economy are associated

with varying equity premium levels. Dirty capital is perceived as riskier because emission risk is

priced in the pricing kernel. Therefore, a lower ratio of dirty capital corresponds to a lower equity
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premium, assuming that the aggregate productivity aversion γ is fixed. With the SDF in equation

(34), higher values of γ result in higher equity premiums. To counteract the negative impact of

higher θ on the equity premium, a higher γ is selected.

Figure 4 displays the optimal γ with respect to θ under two scenarios of capital substitutability.

ν = +∞ indicates perfect substitution between the two types of capital, whereas ν = 0.3 represents

higher capital complementarity, as observed in the data. Because a higher θ results in a lower ratio

of dirty capital and, therefore, a lower equity premium, a higher optimal γ is selected to keep the

equity premium fixed. This pattern holds qualitatively across both substitutability scenarios. Since

the share of dirty capital decreases faster in the perfect substitution scenario as θ increases, this

scenario requires an overall higher optimal γ.23

Figure 5 illustrates the average ratio of dirty capital and greenium after selecting the optimal

γ to maintain a constant equity premium. In Panel (a), the results for the dirty capital ratio align

with those of the two-period model and scenario γ = 5. Higher levels of emission aversion θ and

capital substitutability ν correspond to lower ratios of dirty capital. Investor emission aversion has

only limited effects when the two types of capital are more complementary due to productivity

concerns. However, if the two types of capital are perfectly substitutable, climate change concerns

dominate, resulting in a significantly lower ratio of dirty capital.

Figure 5, Panel (b), presents the results for the greenium. Higher levels of emission aversion

and greater substitutability lead to a greater greenium, driven by a lower ratio of dirty capital and

reduced dirty investments. Because of the concavity of the production function, lower investment

incurs lower marginal adjustment costs but yields higher marginal expected benefits, consequently

resulting in higher marginal expected returns. When dirty capital is highly complementary, ν = 0.3,

the greenium is slightly negative. This is because the firm holds almost the same amount of dirty

capital and clean capital. When the dirty capital and clean capital levels are similar, the marginal

23Figure E.1 illustrates the optimal ratio of dirty capital and annualized equity premium with respect to different
levels of emission aversion θ, while maintaining a fixed aggregate risk aversion γ = 5. Higher values of θ result
in a lower portion of dirty capital in the economy and, consequently, a lower equity premium. Similarly, perfect
substitution between clean capital and dirty capital yields a lower ratio of dirty capital and a lower equity premium.

33



investment costs (denominator of the investment return) are similar. However, dirty investment

generates lower marginal benefits because of the potential temperature increase and damage, low-

ering the numerator of the investment return. As a result, the expected dirty investment return is

slightly lower than the clean investment return, yielding a slightly negative greenium.24

Then, I show how capital allocation varies across different levels of substitutability. Figure 6

shows the relation between the ratio of dirty capital and different prices of the carbon emission

shock, θ, under various values of ν. Starting with ν = 0.3, as suggested by the empirical estimates,

I incrementally increase it to 1 (Cobb-Douglas), 2, 5, 10, and +∞ (perfect substitution). The real

effects of sustainability demand on the firm’s ratio of dirty capital become stronger as ν increases.

When the production function is Cobb-Douglas (ν = 1), the effects are not substantial, and the

lowest ratio of dirty capital is approximately 47%. In contrast, if ν = 5, the ratio of dirty capital

decreases to approximately 33%, which is half the effect compared with perfect substitution. The

results suggest that to achieve better effectiveness of sustainable investing, perfect substitution

might not be mandatory, but the high complementarity between dirty capital and clean capital

must be addressed. Moreover, the results indicate that even a high ν of 5 achieves only half the

effect of the perfect substitution scenario, showing that this implicit assumption in prior studies

may be overly optimistic.

The implications for temperature change are straightforward. Increased production using dirty

capital results in increased CO2 emissions, which exacerbates climate change. Although investor

concerns about climate change help to alleviate temperature increases, this effect is limited when

the two types of capital are highly complementary.

Figure 7 depicts the average simulated temperature change over the next 100 years, with θ set

at 13 and γ at the optimal value that maintains a constant equity premium.25 The temperature

increase is significantly lower when the two types of capital are perfect substitutes (ν = +∞) than

24When ν = +∞, the production function is linear and the marginal benefit is constant.
25I report only the result with the highest θ and the corresponding γ that yields an annualized equity premium

approximately 8%. The choice of the maximum value of θ in its grid is due to algorithm convergence limitations, as
the model fails to converge if θ is too high.
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when they are highly complementary (ν = 0.3).

5.3 Comparative Statics

The benchmark assumptions can differ from real-world conditions. In this section, I explore the

comparative statics of how sustainable investors affect dirty capital allocation and the greenium

under different scenarios while holding all other factors constant. Specifically, I focus on economic

forces that can affect green investments, including carbon tax rates, investment adjustment costs,

and the relative productivity of dirty capital compared with that of clean capital. Other compar-

ative statics are reported in Appendix C.

5.3.1 Carbon Tax

In the benchmark results, I set the carbon tax value to zero because most states in the U.S. do not

have a carbon tax. In reality, the carbon tax varies across countries and has increased in recent

years.26 Therefore, in this section, I explore results with all else equal but a higher carbon tax.

Figure 8 shows the results. The effects of sustainable investors are qualitatively the same. A high

carbon tax reduces the optimal portion of dirty capital, as a higher carbon tax generates lower cash

flow each period, given a certain level of emission aversion (θ). Because the firm maximizes its equity

value, it rationally reduces the share of dirty capital. As a result, the optimal share of dirty capital is

lower in both the complementarity and perfect substitution scenarios than in the benchmark results.

The effect of a higher carbon tax is stronger when the two types of capital are perfect substitutes,

because it is easier to replace dirty capital with clean capital in production. The results suggest

that the policy of raising the carbon tax is more effective under perfect substitution, highlighting

the importance of technological innovation in substitution.

The results for the greenium are consistent with the capital allocation decisions. When the two

types of capital are perfect substitutes, a significantly lower share of dirty capital generates a high

marginal equity value per unit of dirty investment, leading to a much greater greenium. In the

26For more details, see the cross-country time series of carbon tax data from the World Bank: https://
carbonpricingdashboard.worldbank.org/compliance/price
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case of complementarity, the effect of a higher carbon tax on capital allocation is limited, resulting

in fewer effects on the greenium. The slightly negative effects on the greenium are also due to

the lesser marginal contribution to the equity value of dirty investments, as a higher carbon tax

generates larger negative impacts on the firm’s cash flow.

5.3.2 Costly Clean Investment

Clean capital could be more costly to adjust than dirty capital, which differs from my benchmark

assumption (Lin et al., 2020). For example, new technologies may require large R&D investments

and high costs for training labor with the necessary human capital. This feature can be reflected in

a higher clean investment adjustment cost (higher ϕC). In the comparative statics, I set the clean

investment adjustment cost to be twice that of the dirty investment adjustment cost and explore

the implications. For practical implications, we can imagine that we currently have a higher clean

investment adjustment cost than dirty investment does, and we want to decrease the cost to at

least match the dirty investment adjustment cost.

Figure 9 shows the results. The effects of sustainable investors remain qualitatively the same.

Doubled clean investment adjustment costs reduce overall cash flows, leading to lower optimal levels

of both dirty capital and clean capital. Intuitively, the share of clean capital decreases compared

with the benchmark results. The effects are more significant when there is less emission aversion.

However, the investment adjustment cost is not the game changer. Although investing in clean

capital is substantially more costly, sustainability motivations can still lead to a much lower alloca-

tion toward dirty capital. There is minimal effect from changing clean investment adjustment costs

if dirty capital is highly complementary, suggesting that reducing the investment adjustment cost

is not the key. Sustainable investing can yield real, tangible effects only after the complementarity

problem is addressed.

The effects on the greenium are stronger than those on capital allocation. These results are

driven by much higher expected marginal returns on clean investments. The higher investment ad-

36



justment cost substantially discourages the accumulation of clean capital. The significantly lower

level of clean capital generates much higher marginal expected investment returns, even though

the overall ratio of clean capital is higher than the benchmark results. The higher marginal clean

investment returns consequently lower the greenium.

5.3.3 Relative Productivity Share

Although growing rapidly, current clean technology investment is still in progress. According to

the United Nations, renewable energy cannot completely replace fossil fuels, and fossil fuels still

play a larger role in global energy production.27 It may be overly optimistic to assume that clean

capital and dirty capital contribute equally to total production (α = 0.5). Therefore, I explore the

comparative statics with lower productivity shares of dirty capital and examine the implications.

The results for cases where dirty capital has a higher productivity share are reported in Appendix C.

Figure 10 plots the results when dirty capital plays a smaller role in the production function.

Intuitively, a lower share of dirty capital leads to reduced accumulation of dirty capital. The effects

are significantly stronger when dirty capital and clean capital are perfect substitutes. The effects of

sustainable investors are qualitatively similar. Stronger emission aversion and climate concerns lead

to a lower share of dirty capital. Even when there is no emission aversion, θ = 0, a lower productivity

share results in a substantially reduced portion of dirty capital in the perfect substitution scenario.

The greenium aligns with the dirty capital accumulation. A substantially lower level of dirty

capital generates larger marginal returns on dirty investments in the perfect substitution scenario.

In the complementarity scenario, the productivity channel is influential. When the productivity

share α is lower, the marginal benefit of dirty investment decreases, reducing the marginal

investment return. When the levels of dirty capital and clean capital are similar, the lower marginal

benefit results in lower returns on dirty investments, and, consequently, a lower expected greenium.

In summary, this section elaborates on the calibration strategy and presents quantitative out-

comes derived from the model outlined in Section 4. Comparative statics are also explored to

27https://www.un.org/en/climatechange/raising-ambition/renewable-energy
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reflect different aspects of reality. The impacts of sustainable investors remain qualitatively sim-

ilar, although effects under different comparative statics are more pronounced when dirty capital

and clean capital are perfect substitutes. More importantly, climate policies, such as a carbon tax,

achieve better results with greater substitutability.

6 Conclusion

In this paper, I elucidate the complexities involved in transitioning to a cleaner economy amid

investors’ climate change concerns. The findings underscore the significant impact of production

frictions in limiting the effects of investors’ nonpecuniary preferences and climate risk aversion on

firm behavior and capital allocation decisions. While sustainable investors exert influence through

the cost of equity and nonpecuniary utility channels, the high complementarity between clean cap-

ital and dirty capital introduces production friction, hindering the economy’s ability to achieve

net-zero emissions. The comparative statics suggest that complementarity is also crucial for the

effectiveness of other environmental forces, such as a carbon tax. The empirical estimates of the

parameter governing the substitutability of dirty capital indicate a still strongly complementary

production function, although dirty capital is becoming more substitutable in recent years.

This study emphasizes the importance of investing in technological innovations that make clean

capital a better substitute for dirty capital to effectively mitigate climate change and achieve sus-

tainability goals. Simply forcing firms to become cleaner through the cost of capital may not

suffice, especially when strong production complementarities are present. A holistic approach that

combines financial incentives with technological advancements is therefore essential for a successful

transition to a cleaner economy.

The model can be extended to study richer testable implications. First, capital substitutability

can be an endogenously chosen variable with associated costs. Specifically, the firm can enhance

substitutability by investing more in R&D. Innovative investments are costly and risky, but they

can assist the firm in successfully phasing out dirty investments and achieving the net-zero emis-
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sion goal. Endogenous technological innovation will lead to richer theoretical predictions about the

firm’s clean innovation and investments in greener projects. This direction will open the door for

both theoretical and empirical research in the future.

Second, the model can be extended to study green bonds or loans. Numerous ongoing studies

examine the cost of financing channels for green bonds and their real effects. By incorporating

green bonds, the model will elucidate the capital structure implications. For example, how many

green bonds should a firm use, and how can green bonds play a different role in incentivizing firms’

clean investments? More broadly, the model can be expanded to explore the interaction between

climate change and capital structure dynamics.

The empirical findings can be extended in several ways for further practical implications. First,

should capital complementarity be considered an important input in a firm’s ESG scores? Improv-

ing capital substitutability in the production function leads to more effective sustainable mandates.

If a high ESG score reflects a greater likelihood that the firm can transition to clean, sustainable

investing that targets high ESG score firms will be more effective. This raises an empirical question:

does the current ESG rating system consider capital complementarity?

Second, substitutability has significant implications for climate policies. For example, the effec-

tiveness of a carbon tax depends on how substitutable dirty capital is, as predicted by the model’s

comparative statics. These testable implications can reveal whether real-world decisions are optimal

and effective on the basis of the substitutability of dirty capital.
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Figure 1: Optimal ratio of dirty capital in the two-period model. Dirty investment is denoted by ID,
and clean investment is denoted by IC . The ratio is defined as ID/(IC + ID). Because of full depreciation,
investment I is equivalent to capital stock K. This figure shows the optimal ratio in relation to different
prices of the carbon emission shock, θ, under two scenarios of substitutability.

Figure 2: The greenium in the two-period model. The greenium is defined according to equations (18)
and (19). This figure shows the greenium in relation to different prices of the carbon emission shock, θ,
under two scenarios of substitutability.
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Figure 3: Relation between ω and ν, the parameters that govern the substitutability between dirty capital
and clean capital, where ω = ν−1

ν . This figure shows how different values of ω correspond to ν. When
ν = 1, the production function is Cobb-Douglas. When ν approaches +∞, dirty capital and clean capital
are perfectly substitutable.

Figure 4: Optimal price of productivity shock, γ, with respect to the price of carbon emission shock, θ.
For each θ, I report the optimal γ that yields an average annualized equity premium closest to 8%. When the
two types of capital are complementary, ν = 0.3. When the two types of capital are perfectly substitutable,
ν = +∞.
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(a) Ratio of Dirty Capital (b) Greenium

Figure 5: Ratio of dirty capital and the greenium. This figure shows the ratio of dirty capital and
the greenium with respect to different prices of the carbon emission shock, θ, under two scenarios of
substitutability. For each θ, the price of the productivity shock, γ, is selected to yield an average annualized
equity premium closest to 8%. The ratio is defined as the level of dirty capital scaled by the total capital
level (clean plus dirty), KD/(KC +KD). When the two types of capital are complementary, ν = 0.3. When
the two types of capital are perfectly substitutable, ν = +∞.

Figure 6: Ratio of dirty capital with respect to different levels of substitutability, ν. For each θ, the price
of the productivity shock, γ, is selected to yield an average annualized equity premium closest to 8%. The
ratio is defined as the level of dirty capital scaled by the total capital level (clean plus dirty), KD/(KC+KD).
When the two types of capital are complementary, as in the data, ν = 0.3. When the production function is
Cobb-Douglas, ν = 1. When the two types of capital are perfectly substitutable, ν = +∞.
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Figure 7: Average temperature change compared with the preindustrial period, ∆T , over the next 100
years. The price of the carbon emission shock, θ, is set to 13, and the price of the productivity shock, γ, is
adjusted to maintain an excess equity return of approximately 8%. Other parameter values are reported in
Table 7. When clean capital and dirty capital are complementary, ν = 0.3. When clean capital and dirty
capital are perfectly substitutable, ν = +∞.

(a) Ratio of Dirty Capital (b) Greenium

Figure 8: Ratio of dirty capital and the greenium with a high carbon tax (τD = 0.6). This figure shows the
ratio of dirty capital and the greenium with respect to different prices of the carbon emission shock, θ, under
two scenarios of substitutability. For each θ, the price of the productivity shock, γ, is selected to generate an
average annualized equity premium closest to 8%. The ratio is defined as the level of dirty capital scaled by
total capital (clean plus dirty), KD/(KC +KD). When the two types of capital are complementary, ν = 0.3.
When the two types of capital are perfectly substitutable, ν = +∞. The benchmark results are plotted with
solid lines, and the results with a high carbon tax are plotted with dashed lines.

43



(a) Ratio of Dirty Capital (b) Greenium

Figure 9: Ratio of dirty capital and the greenium with high clean investment adjustment cost (ϕC = 2).
This figure shows the ratio of dirty capital and the greenium with respect to different prices of the carbon
emission shock, θ, under two scenarios of substitutability. For each θ, the price of the productivity shock,
γ, is selected to generate an average annualized equity premium closest to 8%. The ratio is defined as the
level of dirty capital scaled by the total capital (clean plus dirty), KD/(KC +KD). When the two types of
capital are complementary, ν = 0.3. When the two types of capital are perfectly substitutable, ν = +∞.
The benchmark results are plotted with solid lines, and the results with high clean investment adjustment
costs are plotted with dashed lines.

(a) Ratio of Dirty Capital (b) Greenium

Figure 10: Ratio of dirty capital and the greenium with a low productivity share of dirty capital (α = 0.45).
This figure shows the ratio of dirty capital and the greenium with respect to different prices of the carbon
emission shock, θ, under two scenarios of substitutability. For each θ, the price of the productivity shock,
γ, is selected to generate an average annualized equity premium closest to 8%. The ratio is defined as the
level of dirty capital scaled by the total capital (clean plus dirty), KD/(KC +KD). When the two types of
capital are complementary, ν = 0.3. When the two types of capital are perfectly substitutable, ν = +∞.
The benchmark results are plotted with solid lines, and the results with a low productivity share of dirty
capital are plotted with dashed lines.
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Table 1: Summary Statistics by Country

This table presents the number of observations, sample time range, and averages of key variables
by country. Ln(Y) is the log ratio of the total revenue, where the total revenue is measured in
million U.S. dollars. Ln(GHG1) and Ln(GHG2) are the log ratios of Scope 1 and Scope 2 GHG
emissions, respectively, with carbon emissions measured in tCO2e. Ln(AT) is the log ratio of
the total assets, with the total assets measured in million U.S. dollars.

Panel A: Developed Markets

Country Observations Start Year End Year Ln(Y) Ln(GHG1) Ln(GHG2) Ln(AT)

Australia 52 2004 2022 7.06 10.46 10.69 8.94

Belgium 47 2005 2022 6.82 10.70 9.52 8.28

Canada 1073 2002 2022 7.18 10.94 10.56 8.62

Denmark 46 2002 2022 6.78 8.99 9.45 7.96

France 152 2002 2022 8.13 11.26 11.25 9.00

Germany 114 2002 2022 7.99 10.25 10.61 9.19

Hong Kong 93 2002 2022 8.08 10.05 10.68 9.18

Ireland 256 2002 2022 7.78 10.34 10.38 8.86

Israel 346 2005 2022 5.52 7.89 8.08 6.48

Italy 44 2002 2022 10.04 13.81 12.64 10.64

Japan 164 2002 2022 9.78 11.17 12.64 10.93

Netherlands 136 2002 2022 7.74 9.33 10.27 8.93

Norway 31 2002 2022 9.28 13.25 11.69 9.89

Singapore 63 2005 2022 6.03 9.04 8.43 6.81

Spain 42 2002 2022 9.97 11.34 12.41 11.67

Sweden 46 2002 2022 7.86 9.84 10.96 8.44

Switzerland 150 2002 2022 8.06 10.18 10.63 9.32

United Kingdom 423 2002 2022 8.54 11.20 11.33 9.74

United States 16133 2002 2022 6.66 8.94 9.28 7.83

Panel B: Emerging Markets

Argentina 42 2005 2022 7.99 10.32 9.89 9.01

Bermuda 165 2002 2022 7.47 9.01 9.18 8.94

Brazil 175 2002 2022 8.90 12.59 11.44 9.88

Cayman Islands 42 2010 2022 5.87 9.04 8.49 7.09

Chile 89 2005 2022 7.75 11.14 9.68 9.10

China 681 2002 2022 6.83 9.25 9.50 7.57

Colombia 21 2008 2022 8.24 13.60 10.75 9.02

Greece 114 2002 2022 7.99 10.25 9.05 9.19

India 99 2002 2022 7.85 9.57 10.06 8.92

Indonesia 31 2002 2022 8.37 10.03 11.02 9.00

Jersey 23 2002 2022 5.86 10.68 9.56 6.73

Luxembourg 83 2002 2022 8.09 11.30 11.95 8.40

Mexico 63 2003 2022 8.58 11.34 11.60 9.29

Monaco 37 2014 2022 5.65 13.16 8.62 7.52

Peru 21 2005 2022 7.22 9.55 10.39 9.11

Russia 33 2005 2021 8.53 12.32 12.11 8.85

South Africa 89 2004 2022 7.46 12.12 13.44 8.00

South Korea 78 2002 2022 9.07 11.27 11.77 10.87

Taiwan 103 2002 2022 7.97 11.34 12.46 8.55
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Table 2: Summary Statistics

This table presents summary statistics of the key variables. SD represents the standard deviation. Scope 1

Intensity, Scope 2 Intensity, and Scope 3 Intensity are the logarithms of GHG1, GHG2, and GHG3 emissions

divided by the total revenue, respectively. Ln(G) is the logarithm of carbon emissions. Ln(Y) is the log

ratio of the total revenue, and Ln(AT) is the log ratio of the total assets. Ln(∂Y∂G ) represents the log ratio

of the marginal productivity of emissions, estimated using the 3-digit SIC codes as the sector classification.

GHG1/AT, GHG2/AT, and GHG3/AT are ratios of Scope 1, Scope 2, and Scope 3 emissions to the total

assets, respectively. The total assets and revenue are reported in nominal U.S. dollars.

US Global

Mean SD Min Max Mean SD Min Max

Scope 1 Intensity 2.28 2.02 -9.37 10.04 3.15 1.89 -6.89 10.35

Scope 2 Intensity 2.56 1.36 -6.42 8.47 2.97 1.14 -6.42 8.64

Scope 3 Intensity 4.88 1.36 2.68 13.79 5.23 1.30 2.84 13.79

Scope 1 ln(G) 8.92 3.09 -3.47 19.51 10.05 3.22 -3.47 19.78

Scope 2 ln(G) 9.20 2.64 -3.65 16.92 9.87 2.68 -3.08 17.62

Scope 3 ln(G) 11.52 2.69 -2.21 20.73 12.13 2.87 -1.65 21.12

Ln(Y) 6.66 2.12 0.37 11.72 6.92 2.28 0.37 11.72

Ln(AT) 7.83 1.91 3.72 13.49 7.65 1.90 3.72 13.49

Ln(∂Y∂G ) -3.14 2.35 -15.89 9.14 -4.11 2.23 -16.33 7.13

GHG1/AT 62.25 291.39 0.00 7704.66 105.25 425.24 0.00 12718.73

Ln(GHG1/AT) 1.10 2.78 -10.88 8.95 2.42 2.15 -8.35 9.45

GHG2/AT 18.64 46.81 0.00 2304.09 27.83 81.49 0.00 3078.91

Ln(GHG2/AT) 1.37 2.23 -9.53 7.74 2.24 1.60 -8.22 8.03

GHG3/AT 451.65 5292.29 0.00 658896.60 547.95 5541.43 0.00 658896.60

Ln(GHG3/AT) 3.70 2.19 -6.23 13.40 4.49 1.83 -6.23 13.40
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Table 3: Estimates of ν

This table presents the estimates of ν, representing the degree of substitution of dirty capital, derived

from equations (26) and (27). Proxies for carbon emissions, G, include Scope 1, Scope 2, and Scope 3

emissions. The 2-, 3-, and 4-digit SIC codes are used for sector classification in estimating equation (28) and

calculating the marginal productivity of carbon emissions, ∂Y
∂G . When the independent variable is ∆ ln(∂Y∂G ),

the dependent variable is ∆ ln(G/Y ). Conversely, if the independent variable is ln(∂Y∂G ), the dependent

variable is ln(G/Y ). The estimates and standard errors (in parentheses) are bootstrapped from 10,000

iterations.

Panel A: Scope 1

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.211 0.162 0.146

(0.007) (0.007) (0.006)

ln(∂Y∂G ) 0.349 0.277 0.245

(0.007) (0.007) (0.008)

Constant -0.052 1.608 -0.048 2.019 -0.046 2.249

(0.002) (0.032) (0.003) (0.032) (0.003) (0.033)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y

Panel B: Scope 2

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.218 0.168 0.154

(0.006) (0.006) (0.007)

ln(∂Y∂G ) 0.400 0.356 0.352

(0.007) (0.008) (0.009)

Constant -0.046 1.351 -0.048 1.597 -0.048 1.617

(0.002) (0.030) (0.002) (0.033) (0.003) (0.355)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y

Panel C: Scope 3

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.334 0.278 0.246

(0.007) (0.007) (0.009)

ln(∂Y∂G ) 0.457 0.453 0.441

(0.006) (0.008) (0.009)

Constant 0.017 2.475 0.029 2.621 0.031 2.689

(0.006) (0.033) (0.003) (0.043) (0.003) (0.048)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y
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Table 4: Estimates of ν Before and After Year 2012

This table presents the subsample estimates of ν, the degree of substitution of dirty capital, derived from

equations (26) and (27). The sample is split by the year 2012, with time periods before 2012 denoted by

<=2012 and those after 2012 by >2012. Proxies for carbon emissions, G, include Scope 1 and Scope 2

emissions. The 3- and 4-digit SIC codes are used for sector classification in estimating equation (28) and

calculating the marginal productivity of carbon emissions, ∂Y
∂G . When the independent variable is ∆ ln(∂Y∂G ),

the dependent variable is ∆ ln(G/Y ); otherwise, if the independent variable is ln(∂Y∂G ), the dependent variable

is ln(G/Y ). The estimates and standard errors (in parentheses) are bootstrapped from 10,000 iterations,

while the z-statistics and p-values are derived from the original pooled regressions.

Panel A: Scope 1

SIC3 SIC4

<=2012 >2012 <=2012 >2012 <=2012 >2012 <=2012 >2012

∆ ln(∂Y∂G ) 0.080 0.193 0.074 0.174

(0.007) (0.008) (0.008) (0.009)

ln(∂Y∂G ) 0.144 0.299 0.121 0.279

(0.009) (0.009) (0.104) (0.010)

Constant -0.052 -0.046 2.924 1.839 -0.048 -0.044 3.221 2.009

(0.004) (0.003) (0.046) (0.040) (0.005) (0.003) (0.057) (0.042)

Firm Fixed N N Y Y N N Y Y

Time Fixed Y Y Y Y Y Y Y Y

z-stats 9.272 8.390 7.623 7.867

p-value 0.000 0.000 0.000 0.000

Panel B: Scope 2

SIC3 SIC4

<=2012 >2012 <=2012 >2012 <=2012 >2012 <=2012 >2012

∆ ln(∂Y∂G ) 0.115 0.188 0.124 0.166

(0.010) (0.008) (0.012) (0.008)

ln(∂Y∂G ) 0.263 0.311 0.278 0.293

(0.015) (0.010) (0.017) (0.012)

Constant -0.043 -0.049 1.944 1.775 -0.037 -0.051 1.879 1.842

(0.004) (0.003) (0.063) (0.040) (0.005) (0.003) (0.069) (0.045)

Firm Fixed N N Y Y N N Y Y

Time Fixed Y Y Y Y Y Y Y Y

z-stats 5.414 2.088 3.291 0.443

p-value 0.000 0.037 0.001 0.658
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Table 5: Estimates of α

This table presents the estimates of the share of dirty capital, α, calculated as a function of ln(G/AT ) and

the degree of substitution, ν. Scope 1 and Scope 2 emissions are used to proxy carbon emissions G. The 3-

and 4-digit SIC codes are applied to classify sectors to estimate equation (28) and to determine the marginal

productivity of carbon emissions, ∂Y
∂G . The ”Average ln(G/AT)” row provides the mean logarithm of carbon

emissions divided by total assets. Implied α is derived from equation (26).

Scope 1 Scope 2

3-digit SIC 4-digit SIC 3-digit SIC 4-digit SIC

Average ln(G/AT) 2.42 2.43 2.22 2.10

Implied α 0.54 0.44 0.55 0.42

Table 6: Estimates of ν By Industry

This table presents the estimates of ν, the degree of substitution of dirty capital, across different industries.

Panel A provides estimates from the original equation (26), while Panel B presents estimates from the

first difference equation (27). Scope 1 and Scope 2 emissions are used as proxies for carbon emissions G.

The 3- and 4-digit SIC codes are applied to classify sectors for estimating equation (28) and to calculate

the marginal productivity of carbon emissions, ∂Y
∂G . The industry classification follows the ten-industry

classification available at Ken French’s Website.

Panel A: Original Equation (26)

Scope 1 Scope 2

3-digit SIC 4-digit SIC 3-digit SIC 4-digit SIC

1 Consumer Nondurables 0.125 0.088 0.146 0.150

2 Consumer Durables 0.176 0.148 0.189 0.156

3 Manufacturing 0.184 0.164 0.135 0.098

4 Energy 0.266 0.270 0.356 0.312

5 Hightech 0.418 0.360 0.378 0.288

6 Telecom 0.142 0.180 0.249 0.202

7 Shops 0.162 0.165 0.119 0.135

8 Health 0.400 0.342 0.418 0.374

9 Utilities 0.359 0.290 0.592 0.624

10 Others 0.220 0.152 0.241 0.254

Panel B: First Difference (27)

Scope 1 Scope 2

3-digit SIC 4-digit SIC 3-digit SIC 4-digit SIC

1 Consumer Nondurables 0.037 0.010 0.075 0.107

2 Consumer Durables 0.093 0.101 0.134 0.085

3 Manufacturing 0.088 0.090 0.071 0.076

4 Energy 0.155 0.159 0.227 0.176

5 Hightech 0.307 0.207 0.266 0.180

6 Telecom 0.053 0.060 0.117 0.105

7 Shops 0.064 0.080 0.070 0.082

8 Health 0.276 0.261 0.322 0.276

9 Utilities 0.229 0.196 0.439 0.445

10 Others 0.125 0.105 0.109 0.104
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Table 7: Benchmark Parameter Values

This table lists the benchmark parameter values used to solve and simulate the model at a quarterly frequency.

Each parameter includes its notation, value, and explanation.

Parameter Value Meaning

β 0.99 Subjective discount factor

a1 0 Damage function coefficient (linear)

a2 0.1 Damage function coefficient (square)

λ 0.05 Contribution of emission to temperature change

η 0.01 Emission intensity coefficient

τD 0 Carbon tax rate

α 0.5 Productivity share of dirty capital

µ 1 Degree of homogeneity of the production function

δD 0.03 Dirty capital depreciation rate

δC 0.03 Clean capital depreciation rate

ϕD 1 Dirty investment adjustment cost

ϕC 1 Clean investment adjustment cost

ρx 0.9 Persistence of aggregate productivity

σx 0.03 Volatility of aggregate productivity

x̄ -2.6 Average aggregate productivity

ρz 0.5 Persistence of emission shock

σz 0.005 Volatility of emission shock

z̄ 0 Average emission shock
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Appendix A Additional Examples

To better illustrate the meanings of dirty capital and clean capital, as well as complementarity

versus substitutability, this section provides real-world examples from various industries.

A.1 Complementarity

Steel Manufacturing:

This industry uses two main types of assets: blast furnaces and electric arc furnaces. Blast furnaces

emit significant amounts of carbon but produce the high-purity steel required in sectors such as

aerospace. Electric arc furnaces are cleaner but have limitations in controlling steel purity because

of their reliance on scrap steel. These two furnace types complement each other by producing steel

with different purity levels necessary for diverse end products.

Wind Turbine Manufacturing:

Producing renewable energy equipment, such as wind turbines, depends on steel mills and smelting

facilities for turbine materials (dirty) and renewable energy facilities to power the manufacturing

process (clean). Without either steel production or renewable energy inputs, turbine production is

infeasible.

Semiconductor Manufacturing:

Semiconductor production relies on ”dirty” fabrication tools, such as lithography machines,

and ”clean” facilities, such as cleanrooms. Fabrication equipment is necessary for processing

silicon wafers, while cleanrooms prevent dust and temperature fluctuations from damaging

microcircuitries. Production cannot proceed without either capital type.

A.2 Substitutability

Steel Manufacturing:

As noted in complementarity, blast and electric arc furnaces both produce steel. For products that

do not need high-purity steel, electric arc furnaces can fully substitute for blast furnaces, resulting

in reduced emissions. However, the industry continues to use blast furnaces because of factors such

as installation costs and economies of scale.

55



Utilities:

Utility companies can use wind, water, coal, or gas to generate electricity, substituting energy

sources on the basis of availability. However, high reliance on coal and gas persists due to supply

constraints. For example, solely using wind energy to power New York City is infeasible because

of limited local wind resources.

Transportation:

Transportation companies such as UPS and Amazon use diesel trucks (dirty) and electric trucks

(clean), which can substitute each other to fulfill the same transportation function.

Building Construction:

Green building projects employ sustainable materials such as cross-laminated timber, recycled steel,

and low-carbon cement alternatives to replace traditional concrete, which relies on CO2-intensive

cement production.
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Appendix B Robustness of the Empirical Strategy

B.1 Other Economic Inputs

This subsection demonstrates that the empirical strategy is not contingent upon specific economic

inputs within the production function. Consider a more general production function with N

additional economic inputs apart from the dirty capital KD. For simplicity, the firm and time

indicators i and t are omitted. The firm’s output is

Y = A
(
α(KD)

ν−1
ν +

N∑
j=1

αjK
ν−1
ν

j

) ν
ν−1

where the total production shares satisfy α+
∑N

j=1 αj = 100%. Taking the partial derivative with

respect to KD yields:

∂Y

∂KD
= A · ν

ν − 1
·
(
α(KD)

ν−1
ν +

N∑
j=1

αjK
ν−1
ν

j

) 1
ν−1

· α · ν − 1

ν
·KD

− 1
ν

= A ·
(
α(KD)

ν−1
ν +

N∑
j=1

αjK
ν−1
ν

j

) 1
ν−1

· α ·KD
− 1

ν

= A
ν−1
ν · Y

1
ν · α ·KD

− 1
ν

= α ·A
ν−1
ν ·

(KD

Y

)− 1
ν

Rearranging both sides, I obtain equation (22) again:

KD

Y
= ανAν−1

( ∂Y

∂KD

)−ν

B.2 Other Functional Forms of Dirty Capital

This subsection shows that the estimation strategy of ν does not rely on the specific functional

form between dirty capital and carbon emissions. For simplicity, I omit firm and time indicators.

Consider the dirty capital as a function of carbon emissions as follows:

KD = f(G)
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Take the derivative with respect to G:

∂KD

∂G
= f ′(G)

Plugging into equation (22), I obtain

f(G)

Y
= ανAν−1

(
∂Y

∂KD

)−ν

= ανAν−1

(
∂Y

∂G

∂G

∂KD

)−ν

= ανAν−1

(
∂Y

∂G
· 1

f ′(G)

)−ν

The left-hand side can be rewritten as

f(G)

Y
=
G

Y
· f(G)
G

Then, I obtain

G

Y
=

G

f(G)
ανAν−1

(
∂Y

∂G
· 1

f ′(G)

)−ν

Take the log on both sides, add back the firm and time indicators, and assume that Aν−1 can be

captured by firm and time fixed effects

ln

(
Git
Yit

)
= a− ν · ln

(
∂Yit
∂Git

)
+ ui + ut + uit (46)

where a = ln(Git)− ln(f(Git)) + ν ln(α) + ν ln(f ′(Git))

Equation (46) shows that the specific functional form of f(·) does not affect the estimation

of the coefficient ν, but affects the information in the intercept a. The intercept is a nonlinear

function of other parameters and carbon emissions. In the next two subsections, I show how the

results change given different functional forms of f(·).
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B.2.1 Linear Function

In Section 3, I assume G = ηKD. Equivalently, KD = G
η . Then, plugging the functional form into

equation (46), I obtain

a = ln(Git)− ln

(
Git
η

)
+ ν ln(α) + ν ln

(
1

η

)
= ν ln(α) + (1− ν) ln(η)

In this case, the intercept is a function of the elasticity of substitution ν, the productivity share

of dirty capital α, and the carbon emission intensity η.

B.2.2 Power Function

Suppose that KD = Gb. Then, plugging the functional form into equation (46), I obtain

a = ln(Git)− ln(Gbit) + ν ln(α) + ν ln(b ·Gb−1
it )

= (1− ν)(1− b) ln(Git) + ν ln(α) + ν ln(b)

In this case, the intercept is a function of the elasticity of substitution ν, the productivity share

of dirty capital α, the carbon emission intensity η, the parameter b that governs the functional

form of f(·), and the carbon emissions G.
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Appendix C Other Comparative Statics

This section reports other comparative statics that are not reported in the main text. The goal is

to show how other economic forces interact with the complementarity between dirty capital and

clean capital, and how this interaction affects the ratio of dirty capital and the greenium.

C.1 Decreasing Return to Scale

In the benchmark results, the CES production function Φt has constant returns to scale (µ = 1).

However, previous studies have documented evidence of production functions with decreasing re-

turns to scale (Basu and Fernald, 1997; Lashkari et al., 2024). In this comparative static analysis, I

report results with a lower degree of homogeneity of the production function, µ = 0.9. The results

are qualitatively the same when µ is even lower. Alternatively, this exercise shows the effects of

increasing returns to scale, if the benchmark is when ν = 0.9.

(a) Ratio of Dirty Capital (b) Greenium

Figure C.1: Ratio of dirty capital and the greenium with decreasing return to scale (µ = 0.9). This figure
shows the ratio of dirty capital and the greenium with respect to different prices of the carbon emission shock,
θ, under two scenarios of substitutability. For each θ, the price of the productivity shock, γ, is selected to
generate an average annualized equity premium that is closest to 8%. The ratio is defined as the dirty capital
level scaled by the total capital level (clean plus dirty), KD/(KC +KD). When the two types of capital are
complementary, ν = 0.3. When the two types of capital are perfect substitutes, ν = +∞. The benchmark
results are plotted as solid lines, and the results with decreasing return to scale are plotted as dashed lines.

Figure C.1 shows the impacts of sustainable investors on the ratio of dirty capital (Panel (a))

and the greenium (Panel (b)). The results with perfect substitution (complementarity) are plotted
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in blue (red). The benchmark results are plotted as solid lines, and results with decreasing returns

to scale are plotted as dashed lines.

The effects of sustainable investors are qualitatively the same. Higher emission concern (higher

θ) is associated with less allocation toward dirty capital (lower KD ratio) and a greater greenium.

However, the feature of decreasing returns to scale discourages the accumulation of clean capital.

The intuition is straightforward. Conditional on a certain level of emission aversion (θ), marginally

more clean capital generates less output when the production function has decreasing returns to

scale. Because the firm maximizes its equity value, it rationally increases the share of dirty capital

compared with the scenario with constant returns to scale. As a result, the optimal share of dirty

capital is greater in both the complementarity and perfect substitution scenarios. The effect is

especially salient when there is no emission aversion (θ = 0). The firm almost chooses a balanced

allocation between clean capital and dirty capital.

A higher ratio of dirty capital reduces the greenium. According to equation (33), the expected

marginal return on dirty investment depends on its marginal contribution to equity value. With

decreasing returns to scale, the marginal contribution to equity value becomes lower when there

is a higher level of dirty capital. Additionally, more dirty capital reduces the expected return

by increasing the temperature. Taken together, this reduces the greenium compared with the

benchmark results.

C.2 Higher Productivity Share of Dirty Capital

In Section 5, I show the effects when we lower the productivity share of dirty capital. In this

section, I explore the effects on the ratio of dirty capital and the greenium if we increase the share

of dirty capital.

Figure C.2 shows the results when dirty capital plays a smaller role. The economic mechanisms

are the same, but the results are the opposite of those in the case in which dirty capital is less pro-

ductive. When dirty capital is more productive than clean capital, the optimal share of dirty capital

becomes greater. Because of the flexibility to substitute between clean capital and dirty capital,

productivity motivation dominates if the sustainability concern is not strong enough. Similar to the

results in Section 5, the effects are stronger when the two types of capital are perfect substitutes.
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(a) Ratio of Dirty Capital (b) Greenium

Figure C.2: Ratio of dirty capital and the greenium with a high productivity share of dirty capital
(α = 0.55). This figure shows the ratio of dirty capital and the greenium with respect to different prices of
the carbon emission shock, θ, under two scenarios of substitutability. For each θ, the price of the productivity
shock, γ, is selected to generate an average annualized equity premium that is closest to 8%. The ratio is
defined as the dirty capital level scaled by the total capital level (clean plus dirty), KD/(KC +KD). When
the two types of capital are complementary, ν = 0.3. When the two types of capital are perfect substitutes,
ν = +∞. The benchmark results are plotted as solid lines and the results with high productivity share of
dirty capital are plotted as dashed lines.

The results for the greenium follow similar economic intuitions as those of the previous

comparative statics in Section 5. In the perfect substitution scenario, a significantly higher level of

dirty capital lowers the expected marginal return on dirty investment, dragging down the greenium.

The results in the complementarity scenario are more complicated. There are two contradicting

channels: a higher level of dirty capital is associated with lower marginal dirty investment returns,

whereas a higher productivity share generates higher marginal investment benefits and returns.

The results indicate that the productivity channel dominates and produces a greater greenium

because the level of dirty capital when α = 0.55 is not very different from that in the scenario

where α = 0.5.
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Appendix D Additional Tables

Table D.1: Data Variable Definition

This table lists the data variable names, sources, identifiers in the original data source (ID), and descriptions.

Name Source ID Description

GHG Scope 1 Trucost di 319413 Greenhouse gas (GHG) emissions from
sources that are owned or controlled
by the company (categorised by the
greenhouse gas protocol)

GHG Scope 2 Trucost di 319414 Greenhouse gas (GHG) emissions from
the consumption of purchased electric-
ity, heat, or steam by the company
(categorized by the greenhouse gas pro-
tocol). Emissions are calculated using a
location-based methodology i.e. using
grid emission factors for each region.

GHG Scope 3
Upstream

Trucost di 319415 Greenhouse gas (GHG) emissions from
other upstream activities not covered in
scope 2 (categorised by the greenhouse
gas protocol)

GHG Scope 3
Downstream

Trucost di 326737 Total downstream indirect greenhouse
gas (GHG) emissions associated with
the use of sold goods and services

Total Revenue Trucost di 319522 For holding companies, revenue is
calculated by apportioning each sub-
sidiary’s revenue plus adding dividend,
share of equity profits and gain on
derivatives. For all other companies
the value derives from CIQ data.

Total Asset Compustat AT Total value of assets reported on the
Balance Sheet

Property, Plant and
Equipment (Gross)

Compustat PPEGT The cost and/or valuation of tangible
fixed assets used in the production of
revenue

Property, Plant and
Equipment (Net)

Compustat PPENT The cost, less accumulated deprecia-
tion, of tangible fixed property used in
the production of revenue

Intangible Capital Peters & Taylor K INT Replacement cost of firms intangible
capital
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Table D.2: Estimates of ν with Financial Firms

Estimates of ν, the degree of substitution of dirty capital, including financial firms (SIC code 6000 - 6999).

The estimates follow equations (26) and (27). Proxies for carbon emissions, G, include Scope 1, 2, and 3.

The 2-, 3-, and 4-digit SIC codes are used to classify sectors to estimate equation (28) and the marginal

productivity of carbon emission, ∂Y
∂G . The dependent variable is ∆ ln(G/Y ) if the independent variable is

∆ ln(∂Y∂G ); the dependent variable is ln(G/Y ) if the independent variable is ln(∂Y∂G ). Standard errors are

clustered by firm and reported in parentheses.

Panel A: Scope 1

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.232*** 0.169*** 0.151***

(0.006) (0.005) (0.005)

ln(∂Y∂G ) 0.383*** 0.296*** 0.263***

(0.010) (0.010) (0.010)

Constant -0.049*** 1.111*** -0.046*** 1.437*** -0.044*** 1.571***

(0.001) (0.036) (0.001) (0.032) (0.002) (0.032)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y

Adj-R-squared 0.29 0.96 0.21 0.97 0.18 0.97

N 28650 35436 22685 29194 19575 25633

Panel B: Scope 2

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.232*** 0.179*** 0.164***

(0.006) (0.005) (0.005)

ln(∂Y∂G ) 0.421*** 0.369*** 0.362***

(0.011) (0.012) (0.013)

Constant -0.045*** 1.128*** -0.048*** 1.343*** -0.048*** 1.349***

(0.001) (0.041) (0.001) (0.042) (0.001) (0.045)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y

Adj-R-squared 0.36 0.92 0.31 0.92 0.30 0.92

N 30832 37332 24438 30737 20556 26528

Panel C: Scope 3

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.418*** 0.397*** 0.368***

(0.006) (0.008) (0.008)

ln(∂Y∂G ) 0.507*** 0.513*** 0.500***

(0.007) (0.010) (0.010)

Constant 0.022*** 2.081*** 0.034*** 2.150*** 0.040*** 2.205***

(0.001) (0.037) (0.002) (0.052) (0.002) (0.054)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y

Adj-R-squared 0.64 0.93 0.62 0.91 0.59 0.90

N 32420 38662 26266 32204 22498 28117
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Table D.3: Estimates of ν using PPEGT

This table presents the estimates of ν, the degree of substitution of dirty capital, following equations (26)

and (27). In equation (28), the total asset is replaced by property, plant, and equipment (gross). Proxies for

carbon emissions, G, include Scope 1, 2, and 3. The 2-, 3-, and 4-digit SIC codes are used to classify sectors

to estimate equation (28) and the marginal productivity of carbon emissions, ∂Y
∂G . The dependent variable is

∆ ln(G/Y ) if the independent variable is ∆ ln(∂Y∂G ). The dependent variable is ln(G/Y ) if the independent

variable is ln(∂Y∂G ). Standard errors are clustered by firm and reported in parentheses.

Panel A: Scope 1

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.200*** 0.161*** 0.132***

(0.006) (0.006) (0.006)

ln(∂Y∂G ) 0.356*** 0.284*** 0.253***

(0.017) (0.013) (0.014)

Constant -0.047*** 1.738*** -0.043*** 2.160*** -0.039*** 2.385***

(0.001) (0.073) (0.002) (0.053) (0.002) (0.059)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y

Adj-R-squared 0.23 0.95 0.19 0.95 0.15 0.96

N 25194 31497 19860 25902 16523 22279

Panel B: Scope 2

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.269*** 0.183*** 0.165***

(0.007) (0.006) (0.006)

ln(∂Y∂G ) 0.462*** 0.373*** 0.357***

(0.015) (0.015) (0.015)

Constant -0.044*** 1.214*** -0.041*** 1.565*** -0.041*** 1.634***

(0.001) (0.057) (0.002) (0.054) (0.002) (0.056)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y

Adj-R-squared 0.36 0.87 0.27 0.88 0.26 0.87

N 27856 33767 21618 27537 17970 23572

Panel C: Scope 3

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.402*** 0.332*** 0.290***

(0.007) (0.008) (0.008)

ln(∂Y∂G ) 0.559*** 0.530*** 0.512***

(0.009) (0.012) (0.012)

Constant 0.016*** 2.000*** 0.034*** 2.261*** 0.040*** 2.371***

(0.001) (0.053) (0.002) (0.066) (0.002) (0.070)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y

Adj-R-squared 0.64 0.93 0.58 0.91 0.54 0.90

N 30523 36174 24606 30069 20690 25879
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Table D.4: Estimates of ν using PPENT

This table presents the estimates of ν, the degree of substitution of dirty capital, following equations (26)

and (27). In equation (28), the total asset is replaced by property, plant, and equipment (net). Proxies for

carbon emissions, G, include Scope 1, 2, and 3. The 2-, 3-, and 4-digit SIC codes are used to classify sectors

to estimate equation (28) and the marginal productivity of carbon emissions, ∂Y
∂G . The dependent variable is

∆ ln(G/Y ) if the independent variable is ∆ ln(∂Y∂G ). The dependent variable is ln(G/Y ) if the independent

variable is ln(∂Y∂G ). Standard errors are clustered by firm and reported in parentheses.

Panel A: Scope 1

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.235*** 0.178*** 0.145***

(0.006) (0.006) (0.006)

ln(∂Y∂G ) 0.395*** 0.311*** 0.254***

(0.015) (0.011) (0.012)

Constant -0.047*** 1.588*** -0.044*** 2.046*** -0.040*** 2.388***

(0.001) (0.065) (0.002) (0.046) (0.002) (0.048)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y

Adj-R-squared 0.28 0.96 0.22 0.95 0.18 0.96

N 26807 33005 20460 26578 17197 23031

Panel B: Scope 2

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.284*** 0.185*** 0.176***

(0.007) (0.006) (0.006)

ln(∂Y∂G ) 0.489*** 0.387*** 0.387***

(0.014) (0.014) (0.015)

Constant -0.045*** 1.136*** -0.043*** 1.516*** -0.042*** 1.522***

(0.001) (0.053) (0.001) (0.052) (0.002) (0.055)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y

Adj-R-squared 0.38 0.88 0.28 0.88 0.28 0.88

N 28744 34707 22183 28154 18272 23945

Panel C: Scope 3

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.459*** 0.358*** 0.330***

(0.007) (0.008) (0.008)

ln(∂Y∂G ) 0.603*** 0.549*** 0.537***

(0.007) (0.011) (0.012)

Constant 0.011*** 1.768*** 0.030*** 2.169*** 0.034*** 2.233***

(0.001) (0.044) (0.002) (0.064) (0.002) (0.069)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y

Adj-R-squared 0.68 0.94 0.60 0.92 0.58 0.91

N 30890 36511 24976 30429 20902 26158
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Table D.5: Estimates of ν using PPEGT and Intangible

This table presents the estimates of ν, the degree of substitution of dirty capital, following equations (26)

and (27). In equation (28), the total asset is replaced by the sum of property, plant, and equipment (gross)

and intangible capital. Proxies for carbon emissions, G, include Scope 1, 2, and 3. The 2-, 3-, and 4-digit

SIC codes are used to classify sectors to estimate equation (28) and the marginal productivity of carbon

emissions, ∂Y
∂G . The dependent variable is ∆ ln(G/Y ) if the independent variable is ∆ ln(∂Y∂G ). The dependent

variable is ln(G/Y ) if the independent variable is ln(∂Y∂G ). Standard errors are clustered by firm and reported

in parentheses.

Panel A: Scope 1

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.182*** 0.148*** 0.128***

(0.006) (0.006) (0.006)

ln(∂Y∂G ) 0.356*** 0.282*** 0.252***

(0.016) (0.016) (0.018)

Constant -0.042*** 1.702*** -0.037*** 2.169*** -0.031*** 2.396***

(0.002) (0.071) (0.002) (0.070) (0.002) (0.079)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y

Adj-R-squared 0.23 0.95 0.17 0.96 0.16 0.96

N 22569 28582 17242 22894 14356 19552

Panel B: Scope 2

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.225*** 0.157*** 0.146***

(0.007) (0.006) (0.006)

ln(∂Y∂G ) 0.435*** 0.368*** 0.349***

(0.015) (0.015) (0.016)

Constant -0.022*** 1.269*** -0.013*** 1.588*** -0.014*** 1.681***

(0.001) (0.061) (0.002) (0.059) (0.002) (0.062)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y

Adj-R-squared 0.28 0.87 0.21 0.87 0.19 0.87

N 24913 30588 19059 24611 15365 20553

Panel C: Scope 3

2-digit SIC 3-digit SIC 4-digit SIC

∆ ln(∂Y∂G ) 0.339*** 0.293*** 0.259***

(0.007) (0.007) (0.007)

ln(∂Y∂G ) 0.490*** 0.508*** 0.483***

(0.009) (0.013) (0.014)

Constant 0.024*** 2.314*** 0.042*** 2.335*** 0.046*** 2.491***

(0.001) (0.051) (0.002) (0.073) (0.002) (0.077)

Firm Fixed N Y N Y N Y

Time Fixed Y Y Y Y Y Y

Adj-R-squared 0.63 0.93 0.58 0.90 0.56 0.89

N 27177 32443 21501 26548 17985 22761
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Table D.6: Estimates of ν with Time-Varying Interactive Fixed Effect

This table presents the estimates of ν, the degree of substitution of dirty capital, following equation (26).

The benchmark setting, the separate firm and time fixed effects are replaced by time-varying interactive

fixed effects, following Bai (2009). Proxies for carbon emissions, G, include Scopes 1, 2, and 3. The 2-, 3-,

and 4-digit SIC codes are used to classify sectors to estimate equation (28) and the marginal productivity

of carbon emissions, ∂Y
∂G . The dependent variable is ln(G/Y ), and the independent variable is ln(∂Y∂G ). The

estimates and standard errors (in parentheses) are bootstrapped from 10,000 iterations.

Panel A: Scope 1

2-digit SIC 3-digit SIC 4-digit SIC

1 5 10 1 5 10 1 5 10

ln(∂Y∂G ) 0.682 0.676 0.685 0.709 0.710 0.729 0.716 0.717 0.721

(0.004) (0.004) (0.006) (0.004) (0.005) (0.009) (0.004) (0.006) (0.012)

Constant 0.156 0.213 0.212 0.249 0.275 0.240 0.337 0.356 0.388

(0.015) (0.020) (0.029) (0.017) (0.024) (0.038) (0.018) (0.026) (0.055)

Panel B: Scope 2

2-digit SIC 3-digit SIC 4-digit SIC

1 5 10 1 5 10 1 5 10

ln(∂Y∂G ) 0.548 0.542 0.534 0.543 0.547 0.541 0.545 0.553 0.546

(0.005) (0.010) (0.013) (0.006) (0.011) (0.016) (0.006) (0.009) (0.018)

Constant 0.741 0.766 0.771 0.886 0.851 0.856 0.908 0.852 0.865

(0.020) (0.046) (0.056) (0.023) (0.050) (0.067) (0.023) (0.044) (0.070)

Panel C: Scope 3

2-digit SIC 3-digit SIC 4-digit SIC

1 5 10 1 5 10 1 5 10

ln(∂Y∂G ) 0.597 0.562 0.526 0.610 0.535 0.466 0.598 0.519 0.450

(0.003) (0.005) (0.008) (0.005) (0.008) (0.013) (0.006) (0.008) (0.015)

Constant 1.629 1.826 2.046 1.711 2.088 2.474 1.798 2.162 2.574

(0.019) (0.027) (0.045) (0.027) (0.040) (0.073) (0.031) (0.041) (0.079)
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Table D.7: Estimates of ν by Country

This table presents the estimates of ν by country. GHG1 and GHG2 represent Scope 1 and Scope
2 carbon emissions, respectively. SIC3 and SIC4 correspond to the 3-digit and 4-digit SIC codes,
respectively. The average column shows the average across four different carbon emissions and SIC
code classifications.

Panel A: Developed Markets

Country GHG1 SIC3 GHG1 SIC4 GHG2 SIC3 GHG2 SIC3 Average

Australia 0.441 0.503 0.291 0.119 0.338

Canada 0.308 0.275 0.457 0.454 0.374

Denmark 0.459 0.397 0.637 0.524 0.504

France 0.592 0.120 0.176 0.309 0.299

Germany 0.286 0.326 0.304 0.209 0.281

Hong Kong 0.273 0.135 0.626 0.467 0.375

Ireland 0.207 0.139 0.218 0.108 0.168

Israel 0.396 0.287 0.207 0.176 0.267

Italy 0.312 0.372 0.329 0.213 0.307

Japan 0.023 0.016 0.110 0.044 0.048

Netherlands 0.275 0.324 0.310 0.284 0.298

Norway 0.251 0.198 0.063 0.063 0.144

Singapore 0.085 0.115 0.087 0.124 0.103

Spain 0.207 0.134 0.158 0.126 0.156

Sweden 0.099 0.152 0.258 0.233 0.186

Switzerland 0.311 0.133 0.370 0.357 0.293

United Kingdom 0.293 0.233 0.374 0.390 0.323

United States 0.276 0.246 0.330 0.326 0.295

Panel B: Emerging Markets

Argentina 0.379 0.350 0.520 0.504 0.438

Bermuda 0.286 0.327 0.362 0.377 0.338

Brazil 0.301 0.378 0.626 0.677 0.496

Chile 0.047 0.008 0.424 0.502 0.245

China 0.327 0.313 0.373 0.356 0.342

Greece 0.330 0.330 1.328 1.328 0.829

India 0.329 0.116 0.264 0.131 0.210

Indonesia -0.001 -0.006 -0.044 -0.019 -0.017

Jersey 1.106 0.737 0.841 1.370 1.014

Luxembourg 0.493 0.527 0.494 0.396 0.478

Mexico 0.450 0.540 0.236 0.224 0.363

Peru 0.182 0.173 -0.532 -0.515 -0.173

Russia -0.177 0.281 0.469 0.027 0.150

South Africa 0.359 0.329 0.611 0.563 0.465

South Korea 0.206 0.045 0.568 0.572 0.348

Taiwan 0.241 0.041 0.343 0.345 0.243
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Table D.8: Estimates of ν By Industry

This table presents the estimates of ν, the degree of substitution of dirty capital, by industries. Panel A

presents estimates from the original equation (26). Panel B presents estimates from the first difference

equation (27). The carbon emissions of Scope 1 (GHG1), Scope 2 (GHG2), and Scope 3 (GHG3) are used to

proxy carbon emissions G. The 2-, 3-, and 4-digit SIC codes (SIC2, SIC3, SIC4) are used to classify sectors to

estimate equation (28) and the marginal productivity of carbon emissions ∂Y
∂G . Industry classification follows

the ten industry classifications from Ken French’s Website. The ID column indicates the industry ID:

1-consumer nondurables, 2-consumer durables, 3-manufacturing, 4-energy, 5-hightech, 6-telecom, 7-shops,

8-health, 9-utilities, 10-others. The average column (row) represents the average across different carbon

emissions and industry classifications (industries).

Panel A: Original Equation (26)

ID
GHG1

SIC2

GHG1

SIC3

GHG1

SIC4

GHG2

SIC2

GHG2

SIC3

GHG2

SIC4

GHG3

SIC2

GHG3

SIC3

GHG3

SIC4
Average

1 0.33 0.13 0.09 0.13 0.15 0.15 0.17 0.07 0.08 0.14

2 0.26 0.18 0.15 0.23 0.19 0.16 0.31 0.30 0.15 0.21

3 0.32 0.18 0.16 0.27 0.14 0.10 0.39 0.21 0.16 0.21

4 0.13 0.27 0.27 0.36 0.36 0.31 0.59 0.68 0.67 0.40

5 0.54 0.42 0.36 0.43 0.38 0.29 0.60 0.50 0.40 0.44

6 0.32 0.14 0.18 0.41 0.25 0.20 0.54 0.22 0.15 0.27

7 0.23 0.16 0.17 0.21 0.12 0.14 0.41 0.34 0.25 0.22

8 0.54 0.40 0.34 0.48 0.42 0.37 0.43 0.56 0.47 0.45

9 0.49 0.36 0.29 0.63 0.59 0.62 0.44 0.31 0.31 0.45

10 0.32 0.22 0.15 0.34 0.24 0.25 0.36 0.29 0.29 0.27

Average 0.35 0.25 0.22 0.35 0.28 0.26 0.42 0.35 0.29

Panel B: First Difference (27)

1 0.16 0.04 -0.01 0.11 0.08 0.11 0.12 0.02 0.01 0.07

2 0.21 0.09 0.10 0.17 0.13 0.09 0.32 0.24 0.13 0.16

3 0.17 0.09 0.09 0.19 0.07 0.08 0.30 0.14 0.09 0.13

4 0.05 0.16 0.16 0.19 0.23 0.18 0.11 0.55 0.53 0.24

5 0.40 0.31 0.21 0.35 0.27 0.18 0.53 0.44 0.36 0.34

6 0.17 0.05 0.06 0.22 0.12 0.11 0.48 0.14 0.08 0.16

7 0.09 0.06 0.08 0.10 0.07 0.08 0.33 0.25 0.19 0.14

8 0.38 0.28 0.26 0.39 0.32 0.28 0.46 0.47 0.40 0.36

9 0.33 0.23 0.20 0.46 0.44 0.45 0.33 0.20 0.19 0.31

10 0.18 0.13 0.11 0.18 0.11 0.10 0.25 0.17 0.16 0.15

Average 0.21 0.14 0.12 0.23 0.18 0.16 0.32 0.26 0.21
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Table D.9: Estimates of ν Before and After the Year 2016

This table presents the subsample estimates of ν, the degree of substitution of dirty capital, following

equations (26) and (27). The sample is split by the year 2016. The time period before the year 2016 is

denoted by ≤ 2016. The time period after the year 2016 is denoted by > 2016. Proxies for carbon emissions,

G, include Scope 1 and 2. The 3- and 4-digit SIC codes are used to classify sectors to estimate equation

(28) and the marginal productivity of carbon emissions, ∂Y
∂G . The dependent variable is ∆ ln(G/Y ) if the

independent variable is ∆ ln
(
∂Y
∂G

)
. The dependent variable is ln(G/Y ) if the independent variable is ln

(
∂Y
∂G

)
.

Standard errors are clustered by firm and reported in parentheses.

Panel A: Scope 1

3-digit SIC 4-digit SIC

<=2016 >2016 <=2016 >2016 <=2016 >2016 <=2016 >2016

∆ ln(∂Y∂G ) 0.081*** 0.219*** 0.078*** 0.191***

(0.007) (0.008) (0.007) (0.009)

ln(∂Y∂G ) 0.175*** 0.335*** 0.155*** 0.308***

(0.012) (0.014) (0.013) (0.016)

Constant -0.036*** -0.052*** 2.663*** 1.663*** -0.029*** -0.052*** 2.900*** 1.849***

(0.003) (0.002) (0.055) (0.056) (0.003) (0.003) (0.058) (0.062)

Firm Fixed N N Y Y N N Y Y

Time Fixed Y Y Y Y Y Y Y Y

Adj-R-squared 0.10 0.29 0.96 0.96 0.11 0.24 0.97 0.96

N 5859 10231 8927 12417 4492 8845 7173 11011

z-stats 12.710 8.385 10.001 7.391

p-value 0.000 0.000 0.000 0.000

Panel B: Scope 2

3-digit SIC 4-digit SIC

<=2016 >2016 <=2016 >2016 <=2016 >2016 <=2016 >2016

∆ ln(∂Y∂G ) 0.108*** 0.211*** 0.107*** 0.184***

(0.008) (0.008) (0.009) (0.008)

ln(∂Y∂G ) 0.318*** 0.345*** 0.339*** 0.316***

(0.022) (0.017) (0.025) (0.019)

Constant -0.017*** -0.065*** 1.758*** 1.631*** -0.012*** -0.066*** 1.682*** 1.735***

(0.002) (0.002) (0.088) (0.061) (0.003) (0.002) (0.096) (0.066)

Firm Fixed N N Y Y N N Y Y

Time Fixed Y Y Y Y Y Y Y Y

Adj-R-squared 0.15 0.36 0.88 0.90 0.16 0.33 0.89 0.89

N 6819 11086 9810 13129 4993 9417 7682 11486

z-stats 8.992 0.957 6.443 -0.714

p-value 0.000 0.339 0.000 0.475
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Appendix E Additional Figures

(a) Ratio of Dirty Capital (b) Annual Excess Equity Return

Figure E.1: Optimal ratio of dirty capital and the annualized equity premium given the price of the
productivity shock, γ = 5. This figure shows the optimal ratio of dirty capital and the annualized excess
equity returns with respect to different prices of the carbon emission shock, θ, under two scenarios of
substitutability. The ratio is defined as the dirty capital level scaled by the total capital level (clean plus
dirty), KD/(KC +KD). Excess equity return is the difference between the realized equity return and the
risk-free rate. When the two types of capital are complementary, ν = 0.3. When the two types of capital
are perfect substitutions, ν = +∞.
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